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Motivation

Aircon ON Aircon OFF

Electrical signal at the power socket

One core problem: to design good
mechanisms to infer or learn useful in-
formation from the raw data.

Statistical viewpoint:
• Distributed detection
• Change-point detection
• Semi-supervised learning
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Outline

1 Distributed Detection with Empirically Observed Statistics

2 Change-Point Detection with Training Sequences

3 Information-Theoretic Generalization Error for Iterative Semi-Supervised Learning
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Distributed Detection with Empirically Observed Statistics

Background: Distributed Detection

Different channels

Each is a fusion center

make decision
?

© Candidate: Haiyun He 5



Distributed Detection with Empirically Observed Statistics

Background: Distributed Detection

Different channels

Each is a fusion center

make decision
?

© Candidate: Haiyun He 5



Distributed Detection with Empirically Observed Statistics

Background: Distributed Detection

Different channels

Each is a fusion center

make decision
?

© Candidate: Haiyun He 5



Distributed Detection with Empirically Observed Statistics

Background: Distributed Detection

Different channels

Each is a fusion center

make decision
?

© Candidate: Haiyun He 5



Distributed Detection: Related Works

♠ Inspired by Tsitsiklis who considered distributed detection with known distributions

– A key result: Using a single type of compressor for binary hypothesis testing is optimal

♣ Also inspired by Gutman who adopted an information-theoretic approach to statistical classification

– Derived an asymptotically optimal type-based test

F Question: What is the optimal design of the
channels and the decision rule at the fusion cen-
ter?
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Distributed Detection: System Model
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-Ỹ1,1

... ...

-
Y1,N

W1 -Ỹ1,N
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2 )

© Candidate: Haiyun He 7



Distributed Detection: System Model

• Ratio between lengths: α = N
n

• K different channels:W := {Wi}i∈[K]

Example: K = 2, n = 4, N = 5, α =
5
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Ỹ1,1

��
��
Y1,2

?

W2

?
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Distributed Detection: System Model

Fusion center decision rule γ: decide between the two hypotheses

�
�

�
�

1

H1

�
�

�
�

1
�

�

2

H1 H2

Questions

F Q1: Optimal fusion center decision rule γ givenXn, Y N1 , Y N2 and the channels {Wi}Ki=1?
F Q2: Optimal error exponent?
F Q3: Optimal proportions of different channels, i.e., a = (a1, . . . , aK), b = (b1, . . . , bK)?
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Distributed Detection: Setup

• Type-I and type-II error probabilities:

βj(γ, P1, P2) := Pr{γ(Zn, Ỹ N1 , Ỹ N2 ) 6= Hj | Hj}, j ∈ [2]

• Objective: Consider the family Γn(λ) of all tests γ s.t.

max
(P̃1,P̃2)

β1(γ, P̃1, P̃2) ≤ exp(−nλ).

Given P1, P2, we want to derive the optimal type-II error exponent

E∗ := lim inf
n→∞

sup
γ∈Γn(λ)

− 1

n
log β2(γ;P1, P2).

E∗ depends on train/test ratio α = N
n
, type-I error exponent λ, ratios of channels

a = (a1, . . . , aK),b = (b1, . . . , bK), and distributions P1, P2 (which will be suppressed).
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Distributed Detection: Some Definitions

• Linear combinations of KL-divergences

LD(Q, Q̃, P, P̃ |α,a,b,W) :=
∑
k∈[K]

(akD(Qk‖PWk) + αbkD(Q̃k‖P̃Wk)),

• Set of distributions:

Qλ(α,a,b,W) :=

{
(Q, Q̃) : min

P̃∈P(X )
LD(Q, Q̃, P̃ , P̃ ) ≤ λ

}
.

WhenK = 1 andW1 = I|X|×|X| =⇒ recovers to Gutman’s classification problem setup
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Distributed Detection: Main Results (n→ ∞)

Theorem 1 (Asymptotically optimal type-II error exponent)

Given any pair of target distributions (P1, P2), we have

E∗(λ, α,a,b) = min
(Q,Q̃)∈Qλ(α,a,b,V,W)

LD(Q, Q̃, P2, P1).

In the achievability proof, we use the asymptotically optimal fusion center type-based test:

γ(Zn, Ỹ N1 , Ỹ N2 ) =

{
H1 if min

P̃
LD
(
{TZnak }k∈[K], {TỸNbk1

}k∈[K], P̃ , P̃
)
≤ λ,

H2 otherwise.

Do NOT make use of Ỹ N2 !
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{
H1 if min

P̃
LD
(
{TZnak }k∈[K], {TỸNbk1
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Further discussions on (a,b)

Tsitsiklis’ result (known P1, P2): binary hypothesis testing, only 1 type of channel optimizes the type-II
error exponent and Bayesian error exponent.

Ours: E∗ depends on a,b =⇒ can further maximize over a,b

• Let fα(a,b, λ) := min
(Q,Q̃)

∈Qλ(α,a,b,V,W)

LD
(
Q, Q̃, P2, P1|α,a,b,W

)
(i.e. type-II error exponent)

• Maximized over (a,b)
f∗α(λ) = max

(a,b)
fα(a,b, λ)

• Three cases:
• α→∞: training test
• α→ 0: training test
• αmoderate: training test (Details in full thesis)

© Candidate: Haiyun He 13
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Further discussions on (a,b): α→ ∞

training test

standard basis vector:

Corollary 1

Given any λ ∈ R+ , as α→∞, we have

f∗∞(λ) = max
k∈[K]

f∞(ek, ek, λ),

and thus the maximizers (a∗,b∗) for f∞(a,b, λ) satisfies that (a∗,b∗) are both deterministic and a∗ = b∗. (e.g.
a = (1, 0, 0, . . . , 0), b = (1, 0, 0, . . . , 0))

Explanation: optimal to use only one identical channel to process both test and training sequences.

=⇒ analogous to Tsitsiklis’ result
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Further discussions on (a,b): α→ 0

training test

Lemma 1

Given any (a,b) ∈ P([K])2 and any λ ∈ R+ , ∃α0(a,b, λ) > 0, if α ≤ α0(a,b, λ), then

fα(a,b, λ) = 0.

Explanation: When the training data are too scarce compared to the test data, if we require the type-I
error decays exponentially fast, the decision rule γ always declares H1 and the type-II
error= exp(−nfα(a,b, λ)) = 1 all the time.

© Candidate: Haiyun He 15



Further discussions on (a,b): α→ 0

training test

Lemma 1

Given any (a,b) ∈ P([K])2 and any λ ∈ R+ , ∃α0(a,b, λ) > 0, if α ≤ α0(a,b, λ), then

fα(a,b, λ) = 0.

Explanation: When the training data are too scarce compared to the test data, if we require the type-I
error decays exponentially fast, the decision rule γ always declares H1 and the type-II
error= exp(−nfα(a,b, λ)) = 1 all the time.

© Candidate: Haiyun He 15



Further discussions on (a,b): α→ 0

training test

Lemma 1

Given any (a,b) ∈ P([K])2 and any λ ∈ R+ , ∃α0(a,b, λ) > 0, if α ≤ α0(a,b, λ), then

fα(a,b, λ) = 0.

Explanation: When the training data are too scarce compared to the test data, if we require the type-I
error decays exponentially fast, the decision rule γ always declares H1 and the type-II
error= exp(−nfα(a,b, λ)) = 1 all the time.

© Candidate: Haiyun He 15



Distributed Detection: Summary

F Problem setup: distributed detection with test and training data

F Main results: n→∞
• Optimal fusion center type-based test γ

• Optimal type-II error exponent E∗(λ, α,a,b)

• Optimal design of (a,b) when α→∞: one identical channel at all test and training data

F We also generalized the results to distributed detection problem with m ≥ 2 hypotheses and a
rejection option .

H. He, L. Zhou, and V. Y. F. Tan, “Distributed detection with empirically observed statistics”, IEEE
Transactions on Information Theory, vol. 66, pp. 4349–4367, 2020.
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Outline

1 Distributed Detection with Empirically Observed Statistics

2 Change-Point Detection with Training Sequences

3 Information-Theoretic Generalization Error for Iterative Semi-Supervised Learning
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Change-Point Detection with Training Sequences Motivation

• Change-Point Detection (CPD) with Training Sequences:
Example – Room light change detection

?

light ON light OFFLuminance data
sequence:

• Sensor detects when room light changes:
given a test sequence of sensor data
=⇒ Offline CPD

• Unknown distributions

• Training sequences: collect sensor data when
light is on or off, respectively

Light ON

Light OFF

• Change-point detector: test + training
sequences
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Change-Point Detection Problem Setup

Train. Seq from Class 1 Train. Seq from Class 2
Test Seq

• A sequence of observationsXn = (X1, . . . , Xn) ∈ Xn

• A single change-point C = dαne ∈ [1 : n]

• N = drne for some r ∈ R+

• An estimator γ : Xn+2N 7→ [n] ∪ {e}:{
either declare one of n points in the test sequence
or declare that an “erasure” has occurred
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Change-Point Detection Problem Setup

Train. Seq from Class 1 Train. Seq from Class 2
Test Seq

• Performance metrics: given any true change-point C ∈ [n],
(Xn, Y N1 , Y N2 ) is distributed asXC ∼ PC1 , Xn

C+1 ∼ Pn−C2 , Y N1 ∼ PN1 , and Y N2 ∼ PN2

Undetected error probability:

PC{EC} := Pr
{
γ(Xn, Y N1 , Y N2 ) /∈ [C ±∆] ∪ {e}

}
,

where ∆ represents the confidence width between the output and the true change-point and
[a± b] := [a− b, a+ b].

Erasure probability:

PC{Ee} := Pr
{
γ(Xn, Y N1 , Y N2 ) = e

}
.
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Change-Point Detection Problem Setup

Definition 1 (Good Estimator)

For any ∆ ∈ [0, n/2), any r ∈ R+ , any (λ, ε) ∈ R+ × [0, 1), and any t ∈ [0, 1/2), given any particular pair
(P1, P2) ∈ P(X )2 , an estimator γ : Xn+2N 7→ [n] ∪ {e} is said to be (n,∆, r, λ, ε, t)-good if

max
C∈[n]

PC{Ee} ≤ ε,

and for all (P̃1, P̃2) ∈ P(X 2),

max
C∈[n]

P̃C{EC} ≤ exp(−n1−tλ).

• t = 0: decay exponentially fast, large deviations regime
• t ∈ (0, 1/2): decay subexponentially fast, moderate deviations regime

• Goal: what is the smallest ∆ a good estimator can achieve?
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Change-Point Detection Main Results

Theorem 2 (Optimal confidence width)

For any r ∈ R+ , ε ∈ [0, 1), any pair of distributions (P1, P2) ∈ P(X )2 , the optimal NCW is

∆̄∗(r, λ, P1, P2) =


G−1

min(λ), λ ∈
(

0,Gmin

(1

2

))
, (Gmin is based on Jensen-Shannon divergence and P1, P2)

1

2
, otherwise; (λ is the undetected error exponent)

In the moderate deviations regime, the t-optimal NCW for any t ∈ (0, 1/2) and λ > 0 is

∆̄∗t (r, λ, P1, P2) = max
α∈[0,1]

√
λ
(√

α(α+ r)χ2(P1‖P2) +
√

(1− α)(1− α+ r)χ2(P2‖P1)
)√

2rχ2(P1‖P2)χ2(P2‖P1)
.

For any t ∈ [0, 1/2), ∆̄∗t (r, λ, P1, P2) is independent of ε =⇒ strong converses hold.

> Refer to the full thesis for the asymptotically optimal estimator
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> Refer to the full thesis for the asymptotically optimal estimator
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Change-Point Detection Main Results: Discussions

Optimal NCW ∆̄∗t (r, λ, P1, P2) INCREASES when

F λ (error decaying rate) increases;

Explanations: the requirement maxC∈[n] P̃{EC} ≤ exp(−n1−tλ) becomes more stringent.

F r (train/test ratio) decreases;

Explanations: r = N
n
↓, and thus less knowledge about distributions P1 and P2 can be learned from

the training sequences.
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Fig: Large deviations regime.
(> Refer to the thesis for more figures in moderate deviations regime.)
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Change-Point Detection Main Results: Discussions

Optimal NCW ∆̄∗t (r, λ, P1, P2) INCREASES when

F the distance between P1 and P2 decreases;

Explanations: it is harder to distinguish between them and thus the accuracy of detection
decreases, leading to a larger confidence width.
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Change-Point Detection Contributions

Main contributions: offline single-CPD with training sequences

• The asymptotically optimal confidence width between the estimated and true change-points
under

Confidence Interval
Confidence

Width

• Large deviations regime: the undetected error probability decays exponentially fast
• Moderate deviations regime: ——decays sub-exponentially fast

• An asymptotically optimal estimator based on test and training sequences under both regimes

• The dependence of the optimal confidence width on various parameters

H. He, Q. Zhang, and V. Y. F. Tan, “Optimal change-point detection with training sequences in the large
and moderate deviations regimes”, IEEE Transactions on Information Theory, vol. 67, no. 10, pp.
6758–6784, 2021.
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Outline

1 Distributed Detection with Empirically Observed Statistics

2 Change-Point Detection with Training Sequences

3 Information-Theoretic Generalization Error for Iterative Semi-Supervised Learning
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Information-Theoretic Generalization Error for Iterative SSL

Semi-supervised learning (SSL) algorithms

a small amount of labelled data + a large amount of unlabelled data

Figure: An example of SSL.1,2
1Hu, Zijian, et al. Simple: similar pseudo label exploitation for semi-supervised classification. Proceedings of the IEEE/CVF Conference. (2021).
2Peikari, M., Salama, S., Nofech-Mozes, S. et al. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification. Sci Rep
8, 7193 (2018).

© Candidate: Haiyun He 27



Information-Theoretic Generalization Error for Iterative SSL

Semi-supervised learning (SSL) algorithms

a small amount of labelled data + a large amount of unlabelled data

Figure: An example of SSL.1,2
1Hu, Zijian, et al. Simple: similar pseudo label exploitation for semi-supervised classification. Proceedings of the IEEE/CVF Conference. (2021).
2Peikari, M., Salama, S., Nofech-Mozes, S. et al. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification. Sci Rep
8, 7193 (2018).

© Candidate: Haiyun He 27



Information-Theoretic Gen-Error for Iterative SSL Background

♠ Generalization error:

test loss=training loss+generalization error

♣ Information-theoretic bound:

Theorem 3 (Bu et al. 2020)

Suppose l(θ, Z) is R-sub-Gaussian under Z ∼ PZ
for all θ ∈ Θ, then

|gen| ≤
1

n

n∑
i=1

√
2R2I(W ;Zi).
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

N Iterative semi-supervised learning (SSL) algorithms:

(Xi, Yi)
n
i=1 θ0

(
X ′
i, Ŷ

′
i = fθ0(X

′
i)
)m
i=1

θ1
(
X ′
i, Ŷ

′
i = fθ1(X

′
i)
)2m
i=m+1

θ2 . . . θτ

(X ′
i)
m
i=1 (X ′

i)
2m
i=m+1 (X ′

i)
3m
i=2m+1

• Labelled training dataset Sl = {Z1, . . . , Zn} = {(Xi, Yi)}ni=1,
Xi

i.i.d.∼ PX , Yi is the label
• Unlabelled training dataset Su = {X ′1, . . . , X ′τm}, maximum iteration τ ∈ N
X ′i

i.i.d.∼ PX , m� n

• {Su,t}τt=1, where Su,t = {X ′(t−1)m+1, . . . , X
′
tm}

• Iterative pseudo-labelling: a predictor fθt−1 : X 7→ Y , Ŷ ′i = fθt−1(X ′i)

Su,t =⇒ Ŝu,t = {(X ′i, Ŷ ′i )}i∈It , where It = [(t− 1)m+ 1 : tm]
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Su,t =⇒ Ŝu,t = {(X ′i, Ŷ ′i )}i∈It , where It = [(t− 1)m+ 1 : tm]

© Candidate: Haiyun He 29



Information-Theoretic Gen-Error for Iterative SSL Problem Setup

N Iterative semi-supervised learning (SSL) algorithms:

(Xi, Yi)
n
i=1 θ0

(
X ′
i, Ŷ
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

• Goal: minimize the population risk

LPZ (θt) := EZ∼PZ [l(θt, Z)].

PZ unknown =⇒ Goal: instead minimize the empirical risk
of labelled and pseudo-labelled data:

LSl(θt) :=
1

n

n∑
i=1

l(θt, Zi), LŜu,t
(θt) :=

1

m

∑
i∈It

l(θt, (X
′
i, Ŷ

′
i )).

Total empirical risk: w = n
n+m

LSl,Ŝu,t
(θt) := wLSl(θt) + (1− w)LŜu,t

(θt)

=
1

n+m

( n∑
i=1

l(θt, Zi) +
∑
i∈It

l(θt, (X
′
i, Ŷ

′
i ))

)
.
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′
i )).

Total empirical risk: w = n
n+m

LSl,Ŝu,t
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

Generalization error at the t-th iteration: the expected gap between the population risk of θt and the
empirical risk on the training data

gent(PZ , PX , {Pθk|Sl,Su}
t
k=0, {fθk}

t−1
k=0) := E[LPZ (θt)− LSl,Ŝu,t

(θt)]

= w

(
Eθt [EZ [l(θt, Z) | θt]]−

1

n

n∑
i=1

Eθt,Zi [l(θt, Zi)]
)

+ (1− w)

(
Eθt [EZ [l(θt, Z) | θt]]−

1

m

∑
i∈It

Eθt,X′i,Ŷ ′i [l(θt, (X
′
i, Ŷ

′
i ))]

)
.

◦ gap for the labelled training data
◦ gap for the pseudo-labelled training data

Questions

F How does gent evolve as the iteration count t increases?
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General Results for Generalization Error

Theorem 1.A (Gen-error upper bound for iterative SSL)

Suppose l(θ, Z) ∼ subG(R) under Z ∼ PZ for all θ ∈ Θ, then for any t ∈ [0 : τ ],∣∣gent
∣∣ ≤ w

n

n∑
i=1

Eθ(t−1)

[√
2R2Iθ(t−1) (θt;Zi)

]

+
1− w
m

tm∑
i=(t−1)m+1

Eθ(t−1)

[√
2R2

(
Iθ(t−1) (θt;X′i, Ŷ

′
i ) +Dθ(t−1) (PX′i,Ŷ

′
i
‖PZ)

) ]
.

◦ The term depends on the labelled training data.
◦ The term depends on the pseudo-labelled training data. The divergence is caused by

pseudo-labelling.

♣ Follows from Bu et al. (2020, Theorem 1) and Wu et al. (2020, Theorem 1)
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General Results for Generalization Error

Theorem 1.B (EXACT gen-error for iterative SSL)

Consider the NLL loss function l(θ, Z) = − log pθ(Z), where pθ(Z) is the likelihood of Z under parameter θ. For any
t ∈ [0 : τ ],

gent =Eθ(t)
[
w

n

n∑
i=1

∆h
(i)
θt

+
1− w
m

∑
i∈It

(
∆h
′(i)
θ(t)

+ ∆̃h
′(i)
θ(t)
)]
,

where ∆h
(i)
θt

:= ∆h(PZ‖PZi|θt |pθt ), ∆h
′(i)
θ(t)

:= ∆h(PZ‖PX′i,Ŷ ′i |θ(t−1) |pθt ), and

∆̃h
′(i)
θ(t) := ∆h(PX′i,Ŷ

′
i |θ

(t−1)‖PX′i,Ŷ ′i |θ(t) |pθt ). (i.e., cross-entropies)

◦ The term depends on the labelled training data.
◦ The term depends on the pseudo-labelled training data. The divergence is caused by

pseudo-labelling.
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Main Results on Binary Gaussian Mixture Model

♠ Iterative SSL under bGMM: Under the bGMM with mean µ and standard deviation σ (bGMM(µ, σ)),
assume Y = {−1,+1}, Y ∼ PY = unif{−1,+1}, andX|Y ∼ N (Y µ, σ2Id)

NLL loss:

l(θ, (X,Y ))=− log pθ(X,Y )

= − log
1

2
√

(2π)dσd
+

1

2σ2
(X − Y θ)>(X − Y θ)

Pseudo-labelling function: for any t ∈ [0 : τ ],

Ŷ ′i = fθt−1(X ′i) = sgn(θ>t−1X
′
i)
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Main Results on Binary Gaussian Mixture Model Algorithm

• Step 1: Initial round t = 0 with Sl: Estimate θ using labelled dataset Sl = {(Xi, Yi)}ni=1, i.e.,

θ0 =
1

n

n∑
i=1

YiXi.

• Step 2: Pseudo-label each unlabelled data using previous parameter θt−1: At each t ∈ [1 : τ ], for
any i ∈ It,

Ŷ ′i = sgn(θ>t−1X
′
i).

• Step 3: Refine the model: Estimate new parameter using augmented dataset Sl ∪ {(X ′i, Ŷ ′i )}i∈It ,
i.e.,

θt =
1

n+m

( n∑
i=1

YiXi +
∑
i∈It

Ŷ ′iX
′
i

)
If t < τ , go back to Step 2.
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Main Results on Binary Gaussian Mixture Model (Continued)

Theorem 2 (Exact gen-error for iterative SSL under bGMM)

We derived exact characterization of gen-error gent for iterative SSL under bGMM as a function of standard
deviation σ when the number of unlabelled data is large enough.

> Refer to the thesis for the full theorem.
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Fig.1.3 Gen-error at t = 1 vs σ
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Main Results on Binary Gaussian Mixture Model (Continued)

To mitigate the undesirable increase of gen-error across the pseudo-labelling iterations, we prove that
adding l2-regularization (add λ

2
‖θ‖22 to loss function) to the loss function can help.

Theorem 4 (Gen-error with regularization)

Fix any d ∈ N, and σ, λ ∈ R+. The gen-error at any t ∈ [1 : τ ] is

genreg
t =

gent
1 + σ2λ

.
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Experiments on CIFAR-10 and MNIST

Easy-to-distinguish pairs: ”horse-ship” & “automobile-truck” , and multi-class (Repeat 10 times)

Fig.3.1 “horse-ship”: gen-error Fig.3.2 “automobile-truck”: gen-error Fig.3.3 MNIST: gen-error
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Experiments on CIFAR-10 and MNIST

Difficult-to-distinguish pairs: “cat-dog” (Repeat 10 times)

Fig.4.1 “cat-dog”: gen-error

Fig.4.2 “cat-dog”: gen-error with weight de-
cay 0.0005

Fig.4.3 “cat-dog”: gen-error after con-
vergence versus weight decay
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Information-Theoretic Gen-Error for Iterative SSL Summary

F Problem setup: SSL with iterative pseudo-labelling

F Main contributions:

Answers to previous questions

F How does gent evolve as the iteration count t increases?

♠ Exact information-theoretic characterization for gen-error across the iterations. First decreases when
the class-overlap is small (or increases when the class-overlap is large) and then converges rapidly.

F Do the unlabelled data examples in Su help to improve the generalization error?

♠ Specialize to bGMM case: for large data variance, the unlabelled data DO NOT help, but adding l2
regularization can help to improve.

♠ Extensive experiments on CIFAR-10 and MNIST: corroborate theoretical results on bGMM.

H. He, H. Yan, and V. Y. F. Tan, “Information-Theoretic Characterization of the Generalization Error for
Iterative Semi-Supervised Learning”, Journal of Machine Learning Research (accepted with minor

revisions), 2022+
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