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One core problem: to design good
mechanisms to infer or learn useful in-
formation from the raw data.

Statistical viewpoint:
e Distributed detection
e Change-point detection
e Semi-supervised learning
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@ Distributed Detection with Empirically Observed Statistics

9 Change-Point Detection with Training Sequences

e Information-Theoretic Generalization Error for Iterative Semi-Supervised Learning
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Distributed Detection: Related Works

& Inspired by Tsitsiklis who considered distributed detection with known distributions

Math. Control Signals Systems (1988) 1: 167-182 m
Signals, and Systems

© 1988 Springer-Veriag New York Inc.

D alized D ion by a Large Number of S *

John N. Tsitsiklist

Abstract. We consider the decentralized detection problem, in which N indepen-
dent, identical sensors transmit a finite-valued function of their observations to a
fusion center which then decides which one of M hypotheses is true. For the case
where the number of sensors tends to infinity, we show that it is asymptotically
optimal to divide the sensors into M(M — 1)/2 groups, with all sensors in each
group using the same decision rule in deciding what to transmit. We also show
how the optimal number of sensors in cach group may be determined by solving
a i i For i two hypotheses and
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group using the same decision rule in deciding what to transmit. We also show
how the optimal number of sensors in cach group may be determined by solving

two hypotheses and

Let Ry = infyve o~ 7u(y") be the optimal exponent. Let T be the set of all y¥ e I'¥
with the property that the set {7,, ..., 7w} has at most M(M — 1)/2 different ele-
ments. Let Qu = infx o rg7n(y™) be the optimal cxponent, when we restrict to sets of
decision rules in I§'. The following result shows that. asymptotically, optimality is
not lost. if we restrict to [

Theorem 1. Subject to Assumption | below. limy_ . (Qy — Ry) = 0.
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Legend:

Hypotheses Hy, H»
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e Ratio between lengths: o = &¥

n

e K different channels: W := {W;},c(x)

Example: K =2,n =4, N =5,a = (to show proportions of different channels)
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Test Sequence (Sensor Data)
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Distributed Detection: System Model

N
n

e Ratio between lengths: a =

e K different channels: W := {W, },cx
(to show proportions of different channels)

I
NG I, |

Example: K =2,n =4, N =5,a =

Test Sequence (Sensor Data)
1
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Distributed Detection: System Model

¢ Ratio between lengths: o = &

n

e K different channels: W := {W;},c(x)

Example: K =2,n =4, N =5,a =

NG I, |

Test Sequence (Sensor Data)

@

VA Za Z3

24\

a1:3/4 a2:1/4
a=(3/4,1/4)
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Fusion center decision rule ~: decide between the two hypotheses
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Distributed Detection: System Model

Fusion center decision rule ~: decide between the two hypotheses

Questions

* Q1: Optimal fusion center decision rule v given X™,Y{¥, Y,V and the channels {W;} % ;2

% Q2: Optimal error exponent?
% Q3: Optimal proportions of different channels, i.e.,a = (a1,...,ax), b = (b1,...,bx)?
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Distributed Detection: Setup

e Type-l and type-ll error probabilities:

5j(ﬂ/7pl7p2) = Pr{ﬁ/(z’,Lle]vv{/QN) # Hj | H]}v JjE€ [2]
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Distributed Detection: Setup

e Type-l and type-ll error probabilities:
Bi (v, Pr, Pp) :=Pr{y(2",Yi",Y3") # H; | H,}, j € 2]
e Objective: Consider the family I',, (\) of all tests v s.t.

max S1(v, Pr, P2) < exp(—n)).
(P1,Py)

Given P;, P», we want to derive the optimal type-ll error exponent

* .. 1
E* :=liminf sup ——logpa(v; P, P2).
n0 yeln(h) M

E* depends on train/test ratio « = &, type-l error exponent ), ratios of channels
a=(ai,...,ax),b=(b1,...,bx), and distributions P;, P> (which will be suppressed).
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Distributed Detection: Some Definitions

e Linear combinations of KL-divergences

LD(Q, Q, P, Pla,a,b,W) := > (axD(Qkl|PWi) + abiD(Qr|| PWx)),
ke[K]
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Distributed Detection: Some Definitions

e Linear combinations of KL-divergences

LD(Q, Q, P, Pla,a,b,W) := > (axD(Qkl|PWi) + abiD(Qr|| PWx)),
ke[K]

e Set of distributions:
O (a,a, b, W) := {(Q,Q) : min LD(Q,Q,P,P) < /\}.

PeP(X)

When K = 1 and W, = I| x|« x| = recovers to Gutman’s classification problem setup
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Distributed Detection: Main Results (n — o)

Theorem 1 (Asymptotically optimal type-Il error exponent)

Given any pair of target distributions ( Py, P2), we have

E*(\,a,a,b)= _ min LD(Q,Q, P, P1).
(Q,Q)€Qx (a,8,b,V, W)
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Distributed Detection: Main Results (n — o)

Theorem 1 (Asymptotically optimal type-Il error exponent)

Given any pair of target distributions ( Py, P2), we have

E*(\,a,a,b)= _ min LD(Q,Q, P, P1).
(Q,Q)€Qx (a,8,b,V, W)

In the achievability proof, we use the asymptotically optimal fusion center type-based test:

’Y(Zn )711\77 Y/ZN) - { Hl ! n}i’n LD ({TZ’“% }ke[Kb {Tfﬁka }ke[K]? p’ p) S )\7

H- otherwise.
Wi W Do NOT make use of Y3"!
z" Z8  Topnay 7" Tynay
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Further discussions on (a, b)

Tsitsiklis’ result (known Py, P»): binary hypothesis testing, only 1 type of channel optimizes the type-II
error exponent and Bayesian error exponent.
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Further discussions on (a, b)

Tsitsiklis’ result (known P1, P»): binary hypothesis testing, only 1 type of channel optimizes the type-l|
error exponent and Bayesian error exponent.

Ours: E* depends on a, b = can further maximize over a, b

o Let fu(a,b,\) := min LD(Q,Q,P27P1\a,a,b,W> (i.e. type-ll error exponent)
(Q,Q)
€9, (a,a,b,V,W)

e Maximized over (a, b)

f;()‘) = (a,ab))( fa(a? b7 A)

o Three cases:

O @ =S Gaf | training |[ test |
o a—0: [ training | | test |
e a moderate: | training | | test | (Details in full thesis)
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Further discussions on (a,b): & — o

| training | [ test |

Corollary 1

Given any A € R4, as o — oo, we have

and thus the maximizers (a*, b*) for f (a, b, \) satisfies that (a*, b*) are both deterministic and a* = b*. (e.g.
a= (170707"'70)lb: (170707"'70))
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Explanation: optimal to use only one identical channel to process both test and training sequences.
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Further discussions on (a,b): & — o

| training | [ test |
| BEREERE k=l k kel somer K
standard basis vector: e [0].....Jo[1]o].....]0]

Corollary 1

Given any A € R4, as o — oo, we have

and thus the maximizers (a*, b*) for f (a, b, \) satisfies that (a*, b*) are both deterministic and a* = b*. (e.g.
a= (170707"'70)lb: (170707"'70))

Explanation: optimal to use only one identical channel to process both test and training sequences.

— analogous to Tsitsiklis’ result
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Further discussions on (a,b): & — 0

[training | | test |

Given any (a,b) € P([K])? and any X\ € Ry, Jag(a, b, \) > 0, if a < ap(a, b, \), then
fa(a,b,A) =0.

© Candidate: Haiyun He 15



Further discussions on (a,b): & — 0

[training | | test |

Given any (a,b) € P([K])? and any X\ € Ry, Jag(a, b, \) > 0, if a < ap(a, b, \), then
fa(a,b,A) =0.

Explanation: When the training data are too scarce compared to the test data, if we require the type-|
error decays exponentially fast, the decision rule v always declares H; and the type-Il
error= exp(—nfa(a, b, A)) = 1 all the time.
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Distributed Detection: Summary

% Problem setup: distributed detection with test and training data
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Distributed Detection: Summary

% Problem setup: distributed detection with test and training data

% Mainresults: n — oo
e Optimal fusion center type-based test ~
e Optimal type-Il error exponent E*(\, o, a, b)

e Optimal design of (a, b) when o — co: one identical channel at all test and training data
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Distributed Detection: Summary

% Problem setup: distributed detection with test and training data

% Mainresults: n — oo
e Optimal fusion center type-based test ~
e Optimal type-Il error exponent E*(\, o, a, b)
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% Mainresults: n — oo
e Optimal fusion center type-based test ~
e Optimal type-Il error exponent E*(\, o, a, b)
e Optimal design of (a, b) when o — co: one identical channel at all test and training data

% We also generalized the results to distributed detection problem with m > 2 hypotheses and a
rejection option .

H. He, L. Zhou,and V. Y. F. Tan, “Distributed detection with empirically observed statistics”, IEEE
Transactions on Information Theory, vol. 66, pp. 4349-4367, 2020.
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Luminance data
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sequence: +

?
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e Change-Point Detection (CPD) with Training Sequences:
Example — Room light change detection

e Sensor detects when room light changes:
given a test sequence of sensor data
— Offline CPD

e Unknown distributions

e Training sequences: collect sensor data when
light is on or off, respectively

\ Light ON |

\ Light OFF |

Luminance data
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Change-Point Detection with Training Sequences Motivation

e Change-Point Detection (CPD) with Training Sequences:
Example — Room light change detection

e Sensor detects when room light changes:
given a test sequence of sensor data
— Offline CPD

e Unknown distributions

e Training sequences: collect sensor data when
light is on or off, respectively

\ Light ON |

\ Light OFF |

Luminance data

l e Change-point detector: test + training
sequence:

Ly light OFF sequences

?

© Candidate: Haiyun He



Change-Point Detection Problem Setup

Test Seq
Train. Seq from Class 1 Train. Seq from Class 2
IYLI‘ ‘YLNI |X1 | ;::::t\‘::j |Xn| ‘Y2,Nv ‘Y2-,1
1 C n

e A sequence of observations X" = (X1,...,X,) € A"
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Change-Point Detection Problem Setup

Train. Seq from Class 1

Test Seq

Train. Seq from Class 2

[ Y] [ ]

"‘::tﬁjij

|Xn| ‘YZ.N Yo

e A sequence of observations X" = (X1,...

e A single change-point C = [an] € [1 : n]
e N = [rn] forsomer € Ry
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Change-Point Detection Problem Setup

Test Seq
Train. Seq from Class 1 Train. Seq from Class 2
|Y1,1‘ ‘YI,NI |X1 | EI:I:F:::' |Xn| ‘YZ.N‘ Ya,1
1 ) C n
- i (&
x“o\ ;K\ 110
P # P
e A sequence of observations X" = (X1,...,X,) € A"
e Asingle change-point C' = [an] € [1 : n]

N = [rn] forsomer € Ry
An estimator y : X" s [n] U {e}:

either declare one of n points in the test sequence
or declare that an “erasure” has occurred
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Change-Point Detection Problem Setup

Test Seq
Train. Seq from Class 1 Train. Seq from Class 2
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1 C n

e Performance metrics: given any true change-point C' € [n],
(X", YV, Y5) is distributed as X ~ P, X2, ~ P39 YN ~ PN, and V3" ~ Py
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Change-Point Detection Problem Setup

Test Seq
Train. Seq from Class 1 Train. Seq from Class 2
‘ Yip ‘ ‘Yl.;'\"‘ I X1 ‘ sl:' ‘ X, I Yo Yo
1 C n

e Performance metrics: given any true change-point C' € [n],
(X", YV, Y5) is distributed as X ~ P, X2, ~ P39 YN ~ PN, and V3" ~ Py
Undetected error probability:

Po{Ec} = Pr {y(X", YV, Y5") ¢ [C £ AU {e}},

where A represents the confidence width between the output and the true change-point and
[a £b] :=[a—0b,a+b]
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Test Seq
Train. Seq from Class 1 Train. Seq from Class 2
‘ Yip ‘ ‘Yl.;'\"‘ I X1 ‘ sl:' ‘ X, I Yo Yo
1 C n

e Performance metrics: given any true change-point C' € [n],
(X", YV, Y5) is distributed as X ~ P, X2, ~ P39 YN ~ PN, and V3" ~ Py
Undetected error probability:

Po{Ec} = Pr {y(X", YV, Y5") ¢ [C £ AU {e}},

where A represents the confidence width between the output and the true change-point and
[a £b] :=[a—0b,a+b]

Erasure probability:

Po{&e} :=Pr {v(X", Y{",Ys") = e}.

© Candidate: Haiyun He 20



Change-Point Detection Problem Setup

Definition 1 (Good Estimator)

Forany A € [0,n/2),any r € Ry, any (\,¢) € Ry x [0,1),and any ¢t € [0, 1/2), given any particular pair
(P1, Py) € P(X)?, an estimator v : X2V s [n] U {e} is said to be (n, A, r, A, ¢, t)-good if

ax Po{&} <€,
énem c{€e} <e

and forall (Py, P») € P(Xx2),

max Eb(j{gc} S exp(—nlft/\).
Cé€ln]
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Change-Point Detection Problem Setup

Definition 1 (Good Estimator)

Forany A € [0,n/2),any r € Ry, any (\,¢) € Ry x [0,1),and any ¢t € [0, 1/2), given any particular pair
(P1, Py) € P(X)?, an estimator v : X2V s [n] U {e} is said to be (n, A, r, A, ¢, t)-good if

max Po{€c} <€
c E"] C{ e} S 6
and for all (]517 ]52) c ’P(XQ),

max Eb(j{gc} S exp(—nlft/\).
Cé€ln]

e t = 0: decay exponentially fast, large deviations regime
e ¢ € (0,1/2): decay subexponentially fast, moderate deviations regime

e Goal: what is the smallest A a good estimator can achieve?

© Candidate: Haiyun He 21



Change-Point Detection Main Results

Theorem 2 (Optimal confidence width)

Foranyr € Ry, e € [0, 1), any pair of distributions (Py, P;) € P(X)?, the optimal NCW is

1
-1 ), e (o, Gumin <7>> , (Gin s based on Jensen-Shannon divergence and Py, P»)

min 2

, otherwise; (A is the undetected error exponent)

A*(r,\, P1, P2) =

ol 0

In the moderate deviations regime, the t-optimal NCW for any ¢ € (0,1/2) and X\ > 0 is

Af(r A Py Py) = max VA(Vala+r)x2(Pi[P2) + /(1 — ) (1 — a+r)x2(P2[[P1) )
TR o N AT AT '

© Candidate: Haiyun He 22



Change-Point Detection Main Results

Theorem 2 (Optimal confidence width)

Foranyr € Ry, e € [0, 1), any pair of distributions (Py, P;) € P(X)?, the optimal NCW is

1
-1 ), e (o, Gumin <7>> , (Gin s based on Jensen-Shannon divergence and Py, P»)

min 2

, otherwise; (A is the undetected error exponent)

A*(r,\, P1, P2) =

ol 0

In the moderate deviations regime, the t-optimal NCW for any ¢ € (0,1/2) and X\ > 0 is

Af(r A Py Py) = max VA(Vala+r)x2(Pi[P2) + /(1 — ) (1 — a+r)x2(P2[[P1) )
TR o N AT AT '

Foranyt € [0,1/2), Af(r, A, P1, P2) is independent of e = strong converses hold.
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Change-Point Detection Main Results

Theorem 2 (Optimal confidence width)

Forany r € Ry, e € [0, 1), any pair of distributions (Py, P;) € P(X)?, the optimal NCW is
1
B GI‘H}U(A), A€ (0, Gumin <7)> , (Gmin is based on Jensen-Shannon divergence and P, P»)
A*(r,\, P1, P2) = 2

3’ otherwise; (A is the undetected error exponent)

In the moderate deviations regime, the t-optimal NCW for any ¢ € (0,1/2) and X\ > 0 is

AF(r A Pr,Py) = max VA(Vala+r)x2(Pi[P2) + /(1 — ) (1 — a+r)x2(P2[[P1) )

«€[0,1] V/2rxa(PL[[P2)x2(P2[[P1)

Foranyt € [0,1/2), Af(r, A, P1, P2) is independent of e = strong converses hold.

s Refer to the full thesis for the asymptotically optimal estimator
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Fig: Large deviations regime.
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Change-Point Detection Main Results: Discussions

Optimal NCW Aj(r, A, Pi, Pz) INCREASES when
% the distance between P, and P, decreases;

Explanations: it is harder to distinguish between them and thus the accuracy of detection
decreases, leading to a larger confidence width.

0.5

— || - P = 0.02]
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[Py — Pyl = 0.184
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Fig: Large deviations regime
© Candidate: Haiyun He (3¢ Refer to the thesis for more figures in moderate deviations regime.)
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Main contributions: offline single-CPD with training sequences

e The asymptotically optimal confidence width between the estimated and true change-points
under
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e Large deviations regime: the undetected error probability decays exponentially fast
e Moderate deviations regime: ——decays sub-exponentially fast

e An asymptotically optimal estimator based on test and training sequences under both regimes

e The dependence of the optimal confidence width on various parameters

H. He, Q. Zhang,and V. Y. F. Tan, “Optimal change-point detection with training sequences in the large
and moderate deviations regimes”, IEEE Transactions on Information Theory, vol. 67, no. 10, pp.
6758-6784, 2021.
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e Information-Theoretic Generalization Error for Iterative Semi-Supervised Learning
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Information-Theoretic Generalization Error for Iterative SSL

Semi-supervised learning (SSL) algorithms

a small amount of labelled data + a large amount of unlabelled data

Labeled

(@)
ISR
=1 .

Figure: An example of SSL."2

THu, Zijian, et al. Simple: similar pseudo label exploitation for semi-supervised classification. Proceedings of the IEEE/CVF Conference. (2021).

2Pe'\kari, M., Salama, S., Nofech-Mozes, S. et al. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification. Sci Rep
8,7193 (2018).
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Information-Theoretic Generalization Error for Iterative SSL

Semi-supervised learning (SSL) algorithms

a small amount of labelled data + a large amount of unlabelled data

+and - are labeled points
eare unlabeled points
I
| +
T 1 +
_ 1 + +
- ! + *
== I +
- 1 +
- I
- - 1 + + 7t
- | +
- I
1
I
'
(a) (b)

Figure: An example of SSL."2

THu, Zijian, et al. Simple: similar pseudo label exploitation for semi-supervised classification. Proceedings of the IEEE/CVF Conference. (2021).

2Pe'\kari, M., Salama, S., Nofech-Mozes, S. et al. A Cluster-then-label Semi-supervised Learning Approach for Pathology Image Classification. Sci Rep
8,7193 (2018).
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Information-Theoretic Gen-Error for Iterative SSL Background

& Generalization error:

loss overfitting
b d

@ test loss
@ training loss

eralization

:

iterations

test loss=training loss+generalization error
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Information-Theoretic Gen-Error for Iterative SSL Background

& Generalization error:

loss overfitting
b d

@ test loss
@ training loss

eralization

:

iterations

test loss=training loss+generalization error

© Candidate: Haiyun He

& Information-theoretic bound:

Theorem 3 (Bu et al. 2020)

Suppose (0, Z) is R-sub-Gaussian under Z ~ Py
forall 6 € ©, then

1 n
lgen| < = > \/2R2I(W; Zy).
n
=1

28



Information-Theoretic Gen-Error for Iterative SSL Problem Setup

A lterative semi-supervised learning (SSL) algorithms:

(Xi, Y3)ie, — 90T (X1,Y! = fo (X)), elT (X1, V! = fm(X{))j:mHL’ 92T = 0y

(X i (XD

i/i=m+1 1/1=2m+1
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A lterative semi-supervised learning (SSL) algorithms:

(Xi, Y3)ie, — QOT (X1,Y! = fo (X)), elT (X1, V! = fm(X{))j:mHL’ 92T

(XD

e Labelled training dataset S\ = {71, ...
X B Px, Y; is the label

e Unlabelled training dataset S, = { X1, ..

, iid.

X; ~ Px, m>n

© Candidate: Haiyun He

O XD

yZn} = {(Xi, i) Hen,

., X’ }, maximum iteration 7 € N
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

A lterative semi-supervised learning (SSL) algorithms:

(Xi, Y3)ie, — QOT (X1,Y! = fo (X)), elT (X1, V! = fm(X{))j:mH—’ 92T

(XD

e Labelled training dataset S| = {71, ...,

X e Px, Y; is the label

e Unlabelled training dataset S, = { X1, ..

, iid.

X; ~ Px, m>n

o {Sut}i—1, where Sy = {X(;_1)mi1s--

© Candidate: Haiyun He

O XD

Zn} = {(X:,Yi) i,

., X’ }, maximum iteration 7 € N

°9 Xwg'm}
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

A lterative semi-supervised learning (SSL) algorithms:

(Xi, Y3)ie, — QOT (X1,Y! = fo (X)), elT (X1, V! = fm(X{))j:mH—’ 92T = 0y

(XD i (XD

i/i=m+1 1/1=2m+1

Labelled training dataset S1 = {Z1, ..., Zn} = {(X:,Y3) }iz1,
X; "% P, Vi is the label

Unlabelled training dataset S, = { X1, ..., X~,,}, maximum iteration 7 € N
X/ g Px, m>n

{Su,t}z—:h Where Su,t — {X(,tf])m+1 gy Xg'm}

lterative pseudo-labelling: a predictor fo, , : X — Y, Y/ = fo,_, (X})
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A lterative semi-supervised learning (SSL) algorithms:

(Xi, Y3)ie, — QOT (X1,Y! = fo (X)), 91“r’ (X1, V! = fm(X{))j:mH—’ 92T = 0y

(XD i (XD

i/i=m+1 1/1=2m+1

Labelled training dataset S1 = {Z1,..., Z,} = {(X,,Y:) }iz1,

X e Px, Y; is the label

e Unlabelled training dataset S, = { X1, ..., X~,,}, maximum iteration 7 € N
X/ g Px, m>n

{Su,t}z—:ln Where Su,t — {Xétf])m+1 yeeey Xg'm}

o lterative pseudo-labelling: a predictor fo, , : X — Y, Y/ = fo,_, (X})
St = Sur = {(X],Y{)Yicz,, where T, = [(t — 1)m + 1 : tm)]
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

e Goal: minimize the population risk

Lp,(0¢) :=Ez~p,[l(0+, Z)].
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

e Goal: minimize the population risk

Lp,(0¢) :=Ez~p,[l(0+, Z)].

Pz unknown = Goal: instead minimize the empirical risk
of labelled and pseudo-labelled data:

1 .
Ls, (0:) := Zl 0:,2:), L, ,(0:) = — > U0, (X, Y7)).

€T,

© Candidate: Haiyun He 30



Information-Theoretic Gen-Error for Iterative SSL Problem Setup

e Goal: minimize the population risk

Lp,(0¢) :=Ez~p,[l(0+, Z)].

Pz unknown = Goal: instead minimize the empirical risk
of labelled and pseudo-labelled data:

Ls, (0:) := Zzet L, ,( Zzat, (X1, Y)))

1€If

Total empirical risk: w = -

Lg, s, (0:) == wLs, (6) + (1 — w)Lg, ,(6:)

- (e 20+ Tt x0.909).

1€y
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

Generalization error at the ¢-th iteration: the expected gap between the population risk of 6, and the
empirical risk on the training data

gen, (Pz, Px, {Po, 15,5, Yoeo: {f0, }ib) := E[Lp, (6) — Lg, s, , (60)]

—u;(E()t[Ez[(Qt, |af]—fZE0t [1(8¢, Z: ])

+(1-w (Eef [Ez[1(0:, Z) | 64]] — E > Eo, xr [0, (Xé,f@’))}).

i€ET,
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

Generalization error at the ¢-th iteration: the expected gap between the population risk of 6, and the
empirical risk on the training data

gen,(Pz, Px, {Po,|s,,5, k=0, {for }iz0) := E[Lp, (0:) — Lg, 5, ,(64)]

:w(Egt[Ez[Z(Qt, ) | 64]] —fZEet [1(6:, Z }>

+ (1= w) (B0 [B2[1601 2) | 0] = - 3 By ey 57100, (X6, T ).

1€y

o gap for the labelled training data
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

Generalization error at the ¢-th iteration: the expected gap between the population risk of #; and the
empirical risk on the training data

gen, (Pz, Px,{Pa, 5,5, th=os { fo, }izo) := E[Lp, (6:) — Lg, 5, ,(6:)]

:w(Egt[Ez[l(et, |et]ffZIEef [1(0:, Z ])

+ (=0 (EnB2l1002) 16~ 2 3 B,y 10 (X, T

1€y

o gap for the labelled training data
o gap for the pseudo-labelled training data
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Information-Theoretic Gen-Error for Iterative SSL Problem Setup

Generalization error at the ¢-th iteration: the expected gap between the population risk of 6; and the
empirical risk on the training data

gen,(Pz, Px,{Po, 5,5, toos {for Yhmo) := E[Lp, (6:) — Lg, 3,.,(04)]

:w<n<:9t[Ez[(et, |9t]ffZJE9,, 16,2 )])

n <1—w>(Eet[Ez[<et, 2) 160~ = S B, x Y,met,(X“m)]) .

1€y

o gap for the labelled training data
o gap for the pseudo-labelled training data

Questions

% How does gen, evolve as the iteration count ¢ increases?

% Do the unlabelled data examples in S, help to improve the generalization error?
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General Results for Generalization Error

Theorem 1.A (Gen-error upper bound for iterative SSL)

Suppose (0, Z) ~ subG(R) under Z ~ Py forall § € ©,then forany¢ € [0 : 7],

n
|gent| S % ZEGU*I) [ 2R210(t—1) (9,5', Z1)]
i=1

tm

> Ege-n [\/232(19@—1) (64 X1, ¥) + Dye—1) (Pxy 3711 Pz)) ]
i=(t—1)m+1 )

1—w

+
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General Results for Generalization Error

Theorem 1.A (Gen-error upper bound for iterative SSL)

Suppose (0, Z) ~ subG(R) under Z ~ Py forall § € ©,then forany¢ € [0 : 7],

n
w
|g01’1t| S 5 ZEGH*I) [ 2R219(t—1) (et,ZZ) :|
o=l

tm

> Ege-n [\/232(19@—1) (64 X1, ¥) + Dye—1) (Pxy 3711 Pz)) ]
i=(t—1)m+1 )

1—w

+

o The term depends on the labelled training data.
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General Results for Generalization Error

Theorem 1.A (Gen-error upper bound for iterative SSL)

Suppose (0, Z) ~ subG(R) under Z ~ Py forall € ©,then foranyt € [0 : 7],

n
w
}gent| < . Z]Eo(tfl) [ 2R%1,t—1) (6+; Z;) }
i=1
tm
> By \/232(Ie<t—1>(9t%X£%’)+De<H>(Px;-Y/”Pz)) J
i=(t—1)m+1

1—w

m

o The term depends on the labelled training data.
o The term depends on the pseudo-labelled training data.
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General Results for Generalization Error

Theorem 1.A (Gen-error upper bound for iterative SSL)

Suppose (0, Z) ~ subG(R) under Z ~ Py forall € ©,then foranyt € [0 : 7],

n
w
{gent| < . Z]Eg(t—l)[ 2R2 1,1 (01; Zi) ]
im=1

tm

1—w -
Rl > Epe-v [ \/2R2 (Tg—) (053 X7, YY) + Dye1) (Pxs 411Pz) ) ]
i=(t—1)m+1

o The term depends on the labelled training data.

o The term depends on the pseudo-labelled training data. The divergence is caused by
pseudo-labelling.
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General Results for Generalization Error

Theorem 1.A (Gen-error upper bound for iterative SSL)

Suppose (0, Z) ~ subG(R) under Z ~ Py forall € ©,then foranyt € [0 : 7],

n
w
|gen, | < . Z]Eg(t—l)[ 2R2 111 (0t; Zs) ]
i=1

tm

1—w -
Rl > Epe-v [ \/2R2 (Tg—) (053 X7, YY) + Dye1) (Pxs 411Pz) ) ]
i=(t—1)m+1

o The term depends on the labelled training data.

o The term depends on the pseudo-labelled training data. The divergence is caused by
pseudo-labelling.

& Follows from Bu et al. (2020, Theorem 1) and Wu et al. (2020, Theorem 1)
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General Results for Generalization Error

Theorem 1.B (EXACT gen-error for iterative SSL)

Consider the NLL loss function I(0, Z) = — log pg(Z), where py(Z) is the likelihood of Z under parameter 6. For any
te[0: 7]

n
w N 1—w 3 —~ /(3
gen; =Ky {g > :Ahézt)+7 > (Ah:;(é)) + Ahe(<7t)> )} ;
=i 1€L¢

where AbS) := AL(Pz]|Py, g, |ps, ), AL/ : Ah(Pg||Py; $760-1)Ipo,). and

o(t) "
== (0} . .
Ahgsy = Ah(PXf,Y.’\()(t’U||PX(,Y.’\0(1") |po,)- (i-e., cross-entropies)
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General Results for Generalization Error

Theorem 1.B (EXACT gen-error for iterative SSL)

Consider the NLL loss function [(0, Z) = —log pg(Z), where py(Z) is the likelihood of Z under parameter 6. For any
€0:7]

gen, :Ee(t){ ZA} 5+ Z (Ah/((f)) + &1:9((12)) )
i€Lt
where Ah{) := Ah(Pz|| Pz, s, ps, ), AL\ = Ah(Pz||P 1,97]0¢— [pe, ), and
10)

Ahy (% = Ah(P x1,.v/10¢- |1 Pxs y119()[Pe, ). (€., cross-entropies)

o The term depends on the labelled training data.
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General Results for Generalization Error

Theorem 1.B (EXACT gen-error for iterative SSL)

Consider the NLL loss function I(0, Z) = — log pg(Z), where py(Z) is the likelihood of Z under parameter 6. For any
tel0: 7]

n
w ) 1—w 1(3) —~ 1(4)
gen, :Eem{ — > ARG + = 3 (ARD + Ahgc) }
i=1 1€y
where A := Ah(Pz]|Py, g, |ps, ), AL/ == Ah(Py||Py; $76¢-1Ipo, ), and

9(t) °
== (0} . .
Ahy) = Ah(Pxf,?!w(t*l)||Px{y/\o<f>|p91,)‘ (i.e., cross-entropies)

o The term depends on the labelled training data.

o The term depends on the pseudo-labelled training data. The divergence is caused by
pseudo-labelling.
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Main Results on Binary Gaussian Mixture Model

& lterative SSL under bGMM: Under the bGMM with mean . and standard deviation o (0GMM(y, o)),
assume Y = {—1,+1},Y ~ Py = unif{—1,+1},and X|Y ~ N (Y 1, 0°1)

* Label=-1
i . - ©, |"label=1 |-
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Main Results on Binary Gaussian Mixture Model

& lterative SSL under bGMM: Under the bGMM with mean . and standard deviation o (0GMM(y, o)),
assume Y = {—1,+1},Y ~ Py = unif{—1,+1},and X|Y ~ N (Y 1, 0°1)

NLL loss: o | -
) * Label=-1
[(€~ (X7Y)):710gp¢9(XaY) il | “~ *’xf . :Label=1 1

L x_veT(x—ve) i

=—log———+
g? (2m)dgd 207 o s
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Main Results on Binary Gaussian Mixture Model

& lterative SSL under bGMM: Under the bGMM with mean . and standard deviation o (0GMM(y, o)),
assume Y = {—1,+1},Y ~ Py = unif{—1,+1},and X|Y ~ N (Y 1, 0°1)

NLL loss: o | -
) * Label=-1
[(€~ (X7 Y)):*logpe(X,Y) il , “* *’xf . :Label=1 1

1 T
og————+—(X-Y0) (X-Y0 i
8 5 oK ~ YO (X Y0 -

Pseudo-labelling function: forany ¢ € [0 : 7],

Y/i/ = fot—l(X’Z) = sgn(@;llX;) bl
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Main Results on Binary Gaussian Mixture Model Algorithm

e Step 1: Initial round ¢ = 0 with S;: Estimate 6 using labelled dataset S = {(X;,Yi)}i-y, i.e.,

1 n
== ;YX
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Main Results on Binary Gaussian Mixture Model Algorithm

e Step 1: Initial round ¢ = 0 with S;: Estimate 6 using labelled dataset S = {(X;,Yi)}i-y, i.e.,

1 n
0o = - ;YX

e Step 2: Pseudo-label each unlabelled data using previous parameter 6,_: Ateach ¢ € [1: 7], for
any: € 7y,

Y/ = sgn(0,_1 X7).
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Main Results on Binary Gaussian Mixture Model Algorithm

e Step 1: Initial round ¢ = 0 with S;: Estimate 6 using labelled dataset S = {(X;,Yi)}i-y, i.e.,

1 n
0o = - ;YX

e Step 2: Pseudo-label each unlabelled data using previous parameter 6,_: Ateach ¢ € [1: 7], for
any: € 7y, .
Y/ = sgn(0,_1 X7).

o Step 3: Refine the model: Estimate new parameter using augmented dataset S, U {( X}, f/,-,’)}igzt,
i.e.,

0y =

1 n .
n+m(;‘mxi+ ZY/Xé)

1€y

If t < 7, go back to Step 2.
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Main Results on Binary Gaussian Mixture Model (Continued)

Theorem 2 (Exact gen-error for iterative SSL under bGMM)

We derived exact characterization of gen-error gen, for iterative SSL under bGMM as a function of standard
deviation o when the number of unlabelled data is large enough.

s« Refer to the thesis for the full theorem.
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Main Results on Binary Gaussian Mixture Model (Continued)

Theorem 2 (Exact gen-error for iterative SSL under bGMM)

We derived exact characterization of gen-error gen, for iterative SSL under bGMM as a function of standard
deviation o when the number of unlabelled data is large enough.

s« Refer to the thesis for the full theorem.
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-+ Empirical
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o
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Gen-error
o
N
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o
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Fig.1l1 o = 0.6
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Main Results on Binary Gaussian Mixture Model (Continued)

Theorem 2 (Exact gen-error for iterative SSL under bGMM)

We derived exact characterization of gen-error gen, for iterative SSL under bGMM as a function of standard
deviation o when the number of unlabelled data is large enough.

s« Refer to the thesis for the full theorem.

0.6 0.8
——Theoretical
-+ Empirical 0.6 N { { { { { { N

o
IS

o
ES

Gen-error
o
N
|/
]
Gen-error
o
N

o

0 —-Theoretical
-+ Empirical
0.2 -0.2
2 4 6 8 10 0 2 4 6 8 10
t t
Fig.11 o = 0.6 Fig1.2 o0 =3
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Main Results on Binary Gaussian Mixture Model (Continued)

Theorem 2 (Exact gen-error for iterative SSL under bGMM)

We derived exact characterization of gen-error gen, for iterative SSL under bGMM as a function of standard
deviation o when the number of unlabelled data is large enough.

s« Refer to the thesis for the full theorem.

0.6 0.8 0.6
04 -+ Empirical 0.6 N { { { { { { N g
P o )
E 204 REE 1 1 1 ‘ g
?0.2 ¢ o)
g o2 >
o — : ) 0.2 e
0 1 geng
0 —Theoretical '
-+ Empirical 0 !
0.2 0.2 5
2 4 6 8 10 0 2 4 6 s 10 05 19015 2 25 3
t t o
Fig.11 o = 0.6 Fig1.2 o0 =3 Fig.1.3 Gen-erroratt = 1vs o
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Main Results on Binary Gaussian Mixture Model (Continued)

To mitigate the undesirable increase of gen-error across the pseudo-labelling iterations, we prove that
adding l»-regularization (add % ||@||5 to loss function) to the loss function can help.
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Main Results on Binary Gaussian Mixture Model (Continued)

To mitigate the undesirable increase of gen-error across the pseudo-labelling iterations, we prove that
adding l»-regularization (add % ||@||5 to loss function) to the loss function can help.

Theorem 4 (Gen-error with regularization)

Fix any d € N, and o, A\ € Ry. The gen-erroratanyt € [1: 7]is

reg _ geny
gen, © = oy
1+ 02X
0.8
=
206
g
€04
I
50.2
Rz
&
g0
€3]
h-{-x:o+x=o.1 A=05-FA1=2|

-0.2
0 2 4 ’ 6 8 10

Fig.2.1 Gen-error for o = 3, different A
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Main Results on Binary Gaussian Mixture Model (Continued)

To mitigate the undesirable increase of gen-error across the pseudo-labelling iterations, we prove that
adding l»-regularization (add % ||@||5 to loss function) to the loss function can help.

Theorem 4 (Gen-error with regularization)

Fix any d € N, and o, A\ € Ry. The gen-erroratanyt € [1: 7]is

reg _ geny
gen, - = ————.
14+ o2\
0.8
. 0.6 -F-o = 0.6: Empirical
20,5 ]‘0_5 -}-o = 3: Empirical
z - -0 = 0.6: Theoretical
go4 = 0.4 -0 = 3: Theoretical
— 50.3
o
o2 =
R 20.2
A S
g 0 So1L]
h-{-x:o+x=o.1 A=05-FA1=2|
-0.2 0
0 2 4 6 8 10
t
Fig.2.1 Gen-error for o = 3, different A Fig.2.2 Gen-errorat ¢ = 1 versus A
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Experiments on CIFAR-10 and MNIST

Easy-to-distinguish pairs: "horse-ship” & “automobile-truck”, and multi-class (Repeat 10 times)
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Experiments on CIFAR-10 and MNIST

Easy-to-distinguish pairs: "horse-ship” & “automobile-truck”, and multi-class (Repeat 10 times)

| test_loss 1.0
06 --- train_loss 08
—— gen_error

GENANES L

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

Iteration Iteration
Fig.3.1 “horse-ship”: gen-error Fig.3.2 “automobile-truck”: gen-error
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Experiments on CIFAR-10 and MNIST

Easy-to-distinguish pairs: "horse-ship” & “automobile-truck”, and multi-class (Repeat 10 times)

test_loss
--- train_loss

—— gen_error

0.01{” X
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45
Iteration Iteration Iteration
Fig.3.1 “horse-ship”: gen-error Fig.3.2 “automobile-truck”: gen-error Fig.3.3 MNIST: gen-error
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Experiments on CIFAR-10 and MNIST

Difficult-to-distinguish pairs: “cat-dog” (Repeat 10 times)

--- test_loss
0.50 --- train_loss
) —— gen_error

0 5 10 15 20 25 30 35 40 45
Iteration

Fig.4.1 “cat-dog”: gen-error
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Experiments on CIFAR-10 and MNIST

Difficult-to-distinguish pairs: “cat-dog” (Repeat 10 times)

ALTA
0.81/ \or=/
% \A
AU ANl AT e A
v LAV AV NS PR AL RN
VN A Gy

’ 206
0.751 3
. ! --- test loss

0.50 === train_loss 0.4

) —— gen_error
0.251~y_ AR e ~

_____________________________________ 0.2 e SN L e

0.00

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45

Iteration Iteration
Fig.4.1 “cat-dog”: gen-error Fig.4.2 “cat-dog”: gen-error with weight de-
cay 0.0005
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Experiments on CIFAR-10 and MNIST

Difficult-to-distinguish pairs: “cat-dog” (Repeat 10 times)

10 1.501 | —— gen_error
B ---- test loss

A ---= frain_loss
2l ~ |
0.8{ /N~
/ ZADAD
AN AV RN AN S N S
VI A SNV

’ 206
0.751 3

. ! --- test loss
0.50

--- train_loss 04
) —— gen_error
0.25{~ AAds A
_____________________________________ 4 R e e P CCNEPRI,
0.00
0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 35 40 45 00400 2004 1004 60,04
Iteration Iteration Weight decay parameter (= A* learning rate)
Fig.4.1 “cat-dog”: gen-error Fig.4.2 “cat-dog”: gen-error with weight de- Fig.4.3 “cat-dog”: gen-error after con-
cay 0.0005 vergence versus weight decay
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Information-Theoretic Gen-Error for Iterative SSL Summary

% Problem setup: SSL with iterative pseudo-labelling

© Candidate: Haiyun He 40



Information-Theoretic Gen-Error for Iterative SSL Summary

% Problem setup: SSL with iterative pseudo-labelling

% Main contributions:
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% How does gen, evolve as the iteration count ¢ increases?
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Information-Theoretic Gen-Error for Iterative SSL Summary

% Problem setup: SSL with iterative pseudo-labelling
% Main contributions:

Answers to previous questions

% How does gen, evolve as the iteration count ¢ increases?

# Exact information-theoretic characterization for gen-error across the iterations. First decreases when
the class-overlap is small (or increases when the class-overlap is large) and then converges rapidly.
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# Exact information-theoretic characterization for gen-error across the iterations. First decreases when
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% Do the unlabelled data examples in S, help to improve the generalization error?

& Specialize to bGMM case: for large data variance, the unlabelled data DO NOT help, but adding I
regularization can help to improve.
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% Main contributions:
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% How does gen, evolve as the iteration count ¢ increases?

# Exact information-theoretic characterization for gen-error across the iterations. First decreases when
the class-overlap is small (or increases when the class-overlap is large) and then converges rapidly.

% Do the unlabelled data examples in S, help to improve the generalization error?

& Specialize to bGMM case: for large data variance, the unlabelled data DO NOT help, but adding I
regularization can help to improve.

# Extensive experiments on CIFAR-10 and MNIST: corroborate theoretical results on bGMM.
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Information-Theoretic Gen-Error for Iterative SSL Summary

% Problem setup: SSL with iterative pseudo-labelling
% Main contributions:

Answers to previous questions

% How does gen, evolve as the iteration count ¢ increases?
# Exact information-theoretic characterization for gen-error across the iterations. First decreases when
the class-overlap is small (or increases when the class-overlap is large) and then converges rapidly.

% Do the unlabelled data examples in S, help to improve the generalization error?

& Specialize to bGMM case: for large data variance, the unlabelled data DO NOT help, but adding I
regularization can help to improve.

# Extensive experiments on CIFAR-10 and MNIST: corroborate theoretical results on bGMM.

H. He, H. Yan, and V. Y. F. Tan, “Information-Theoretic Characterization of the Generalization Error for
Iterative Semi-Supervised Learning”, Journal of Machine Learning Research (accepted with minor
revisions), 2022+
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FROM DETECTION THEORY TO SEMI-SUPERVISED LEARNING
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