Theoretically Grounded Framework for LLM Watermarking: A Distribution-Adaptive Approach

Haiyun He

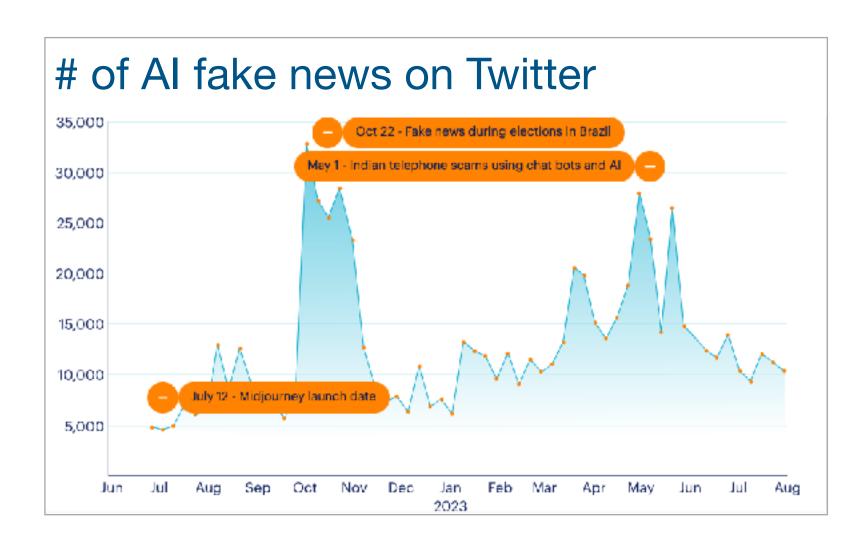
Postdoc @ Center for Applied Mathematics, Cornell University

Yepeng Liu Univ. of Florida

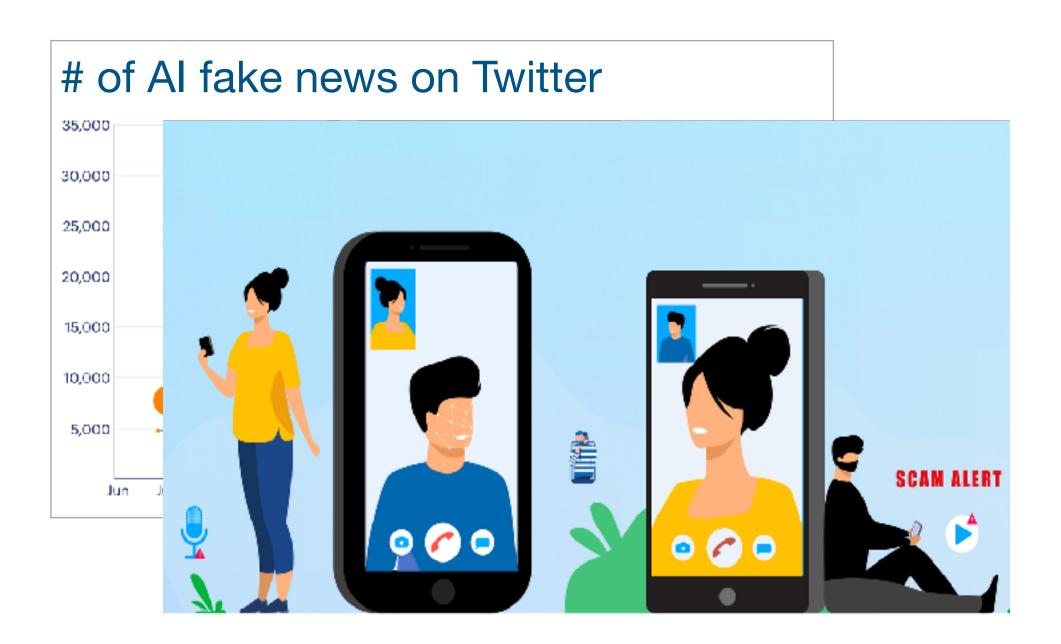
Prof. Ziqiao Wang Tongji Univ.

Prof. Yongyi Mao Univ. of Ottawa

Prof. Yuheng Bu Univ. of Florid



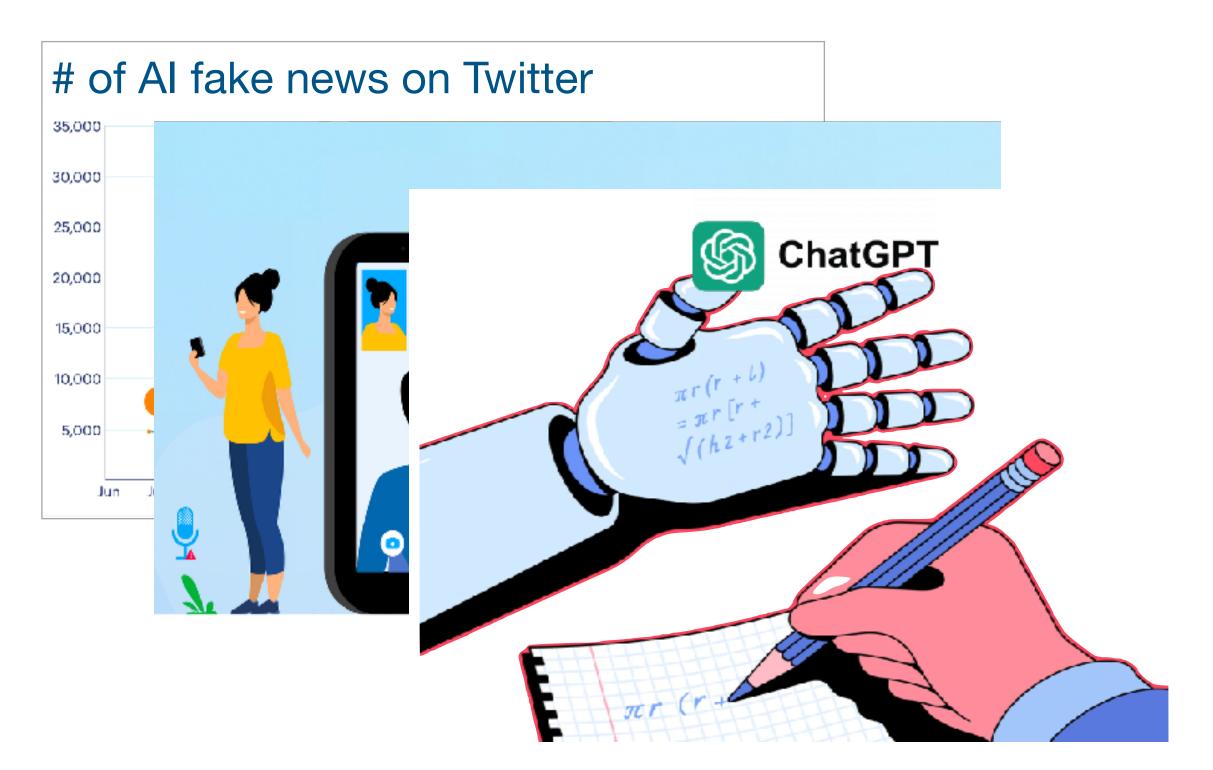
Fake news



Al scams

Plagiarism

Misuse of Al-generated content



Plagiarism

Data Pollution

Misuse of Al-generated content

Plagiarism

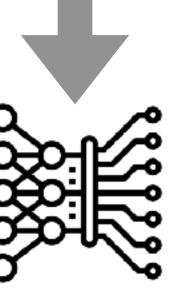
Data Pollution

Misuse of Al-generated content



Plagiarism

Data Pollution

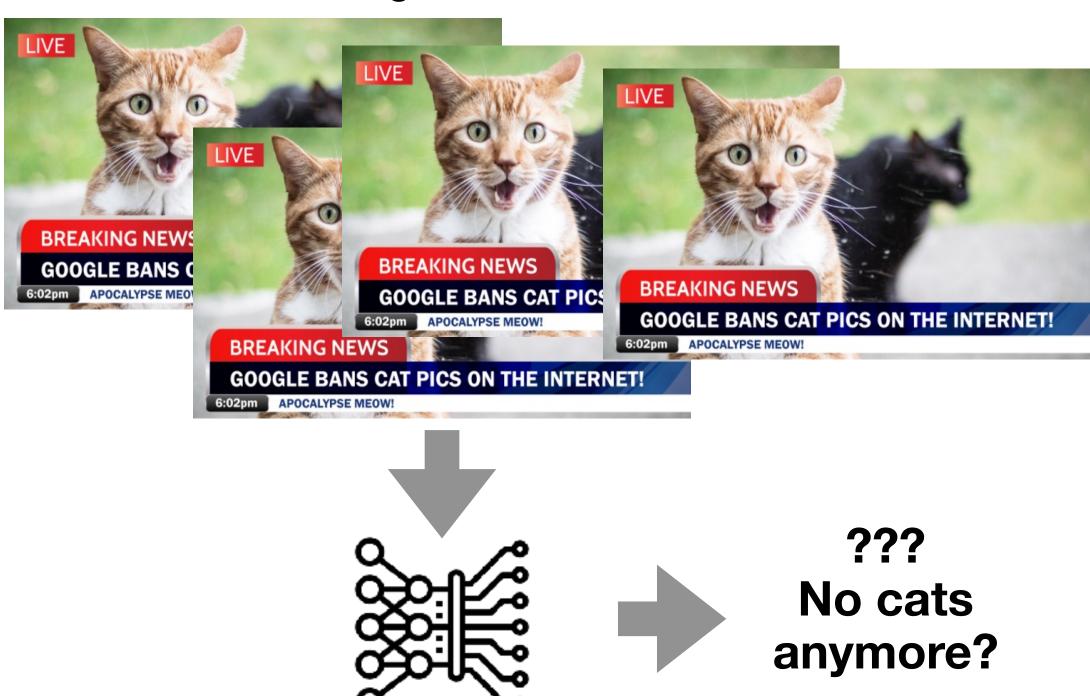


Misuse of Al-generated content



Plagiarism

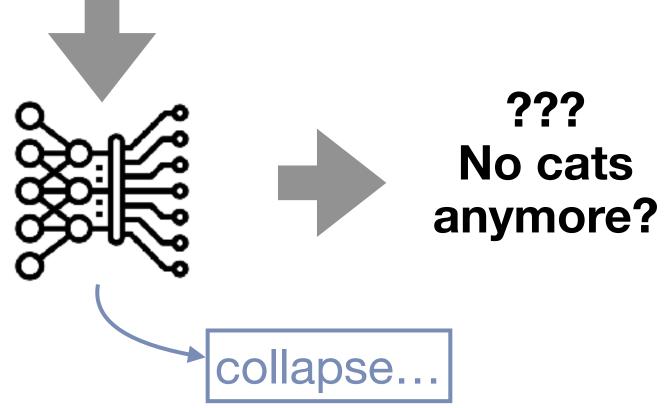
Data Pollution



Misuse of Al-generated content

Plagiarism

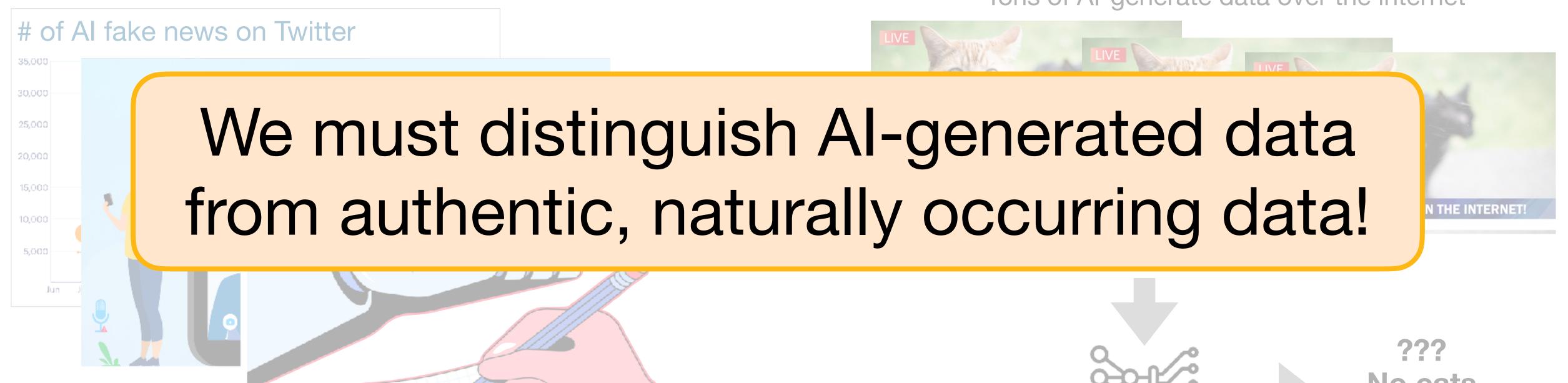
Data Pollution



Misuse of Al-generated content

Data Pollution

Tons of Al-generate data over the internet



Plagiarism

Possible solutions?

Possible solutions?

By observation:

Possible solutions?

"Here's the revised version of your...", "Best regards, [Your Name]" :-D

Possible solutions?

Metadata < --easy to remove

Metadata

File name: Dataset

Author: GPT

Location: Ithaca

Created: Jan 01, 2025

Possible solutions?

Giant database to store all Al-generated content < — storage? privacy?

Possible solutions?

Possible solutions?

-high prob of falsely alarming human-written text

Possible solutions?

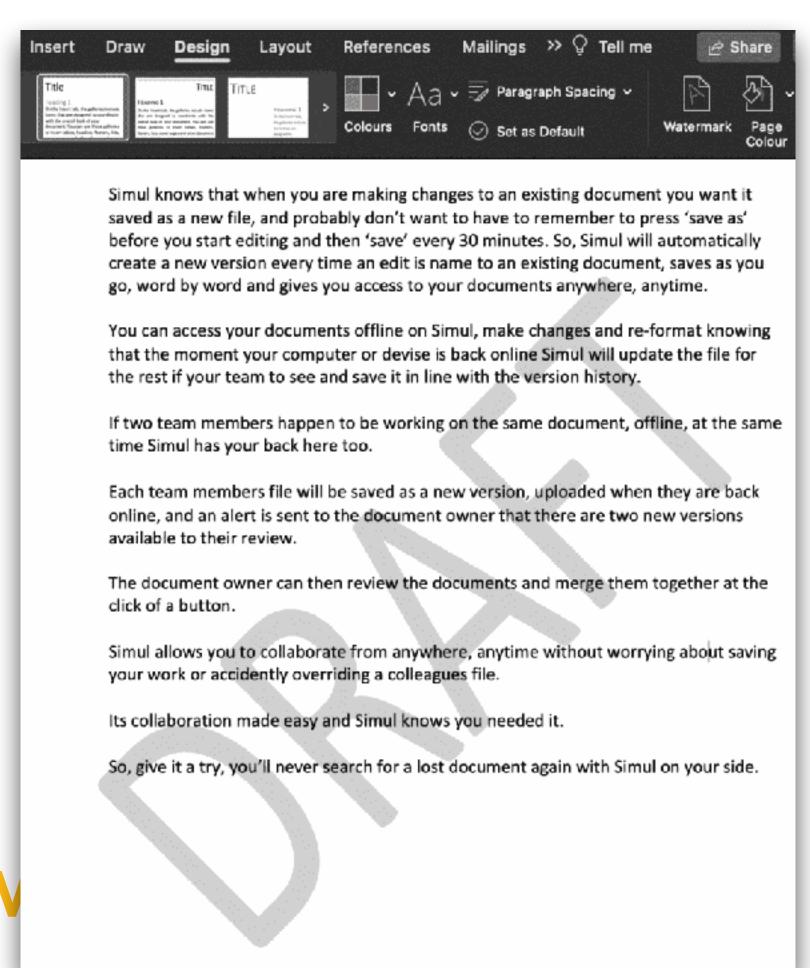
• Watermarking: inserting a signal into LLM predicted tokens

Possible solutions?

Watermarking: inserting a signal into LLM predicted tokens

Possible solutions?

Watermarking: inserting a signal into LLN

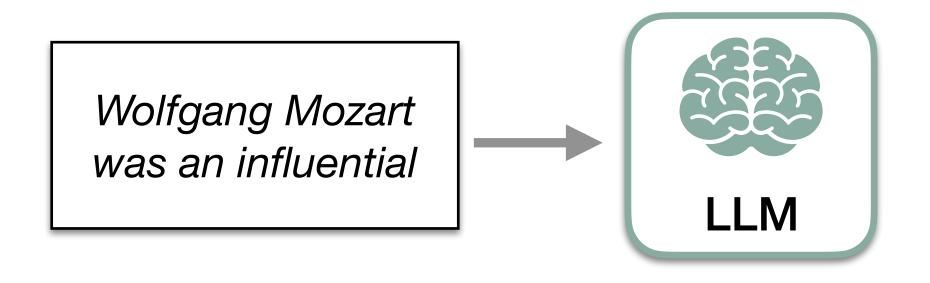


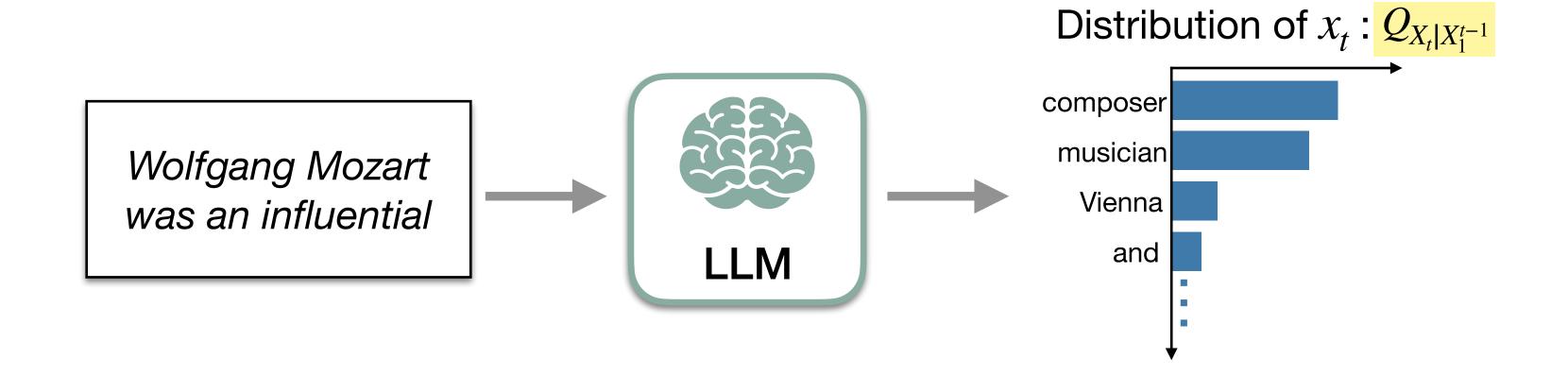
Possible solutions?

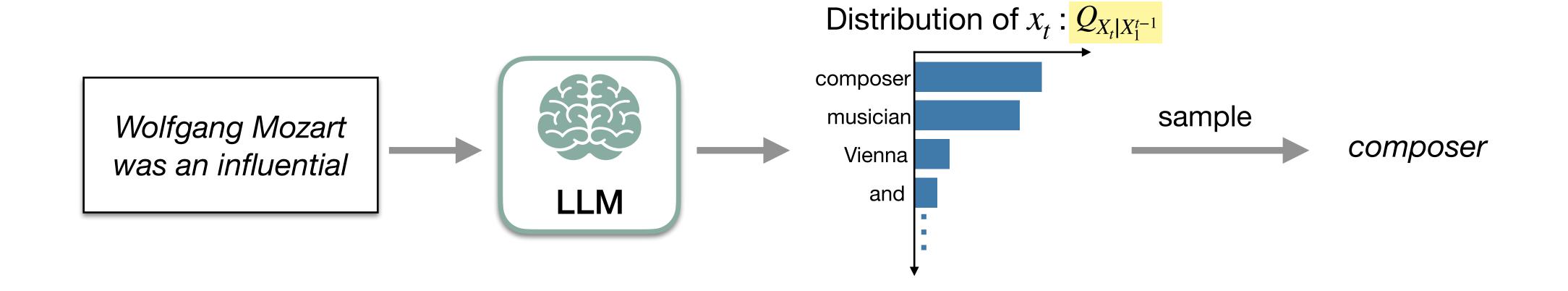
Watermarking: inserting a signal into LLM predicted tokens

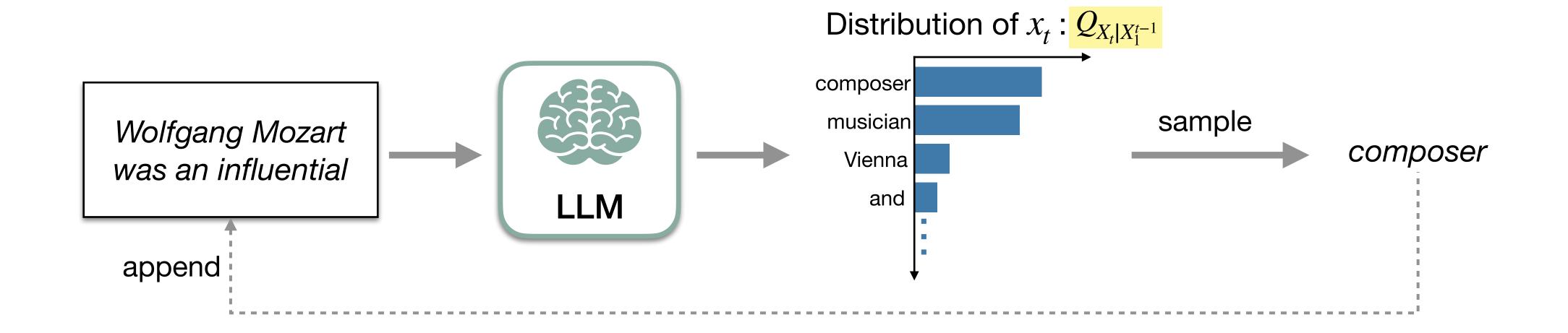
Possible solutions?

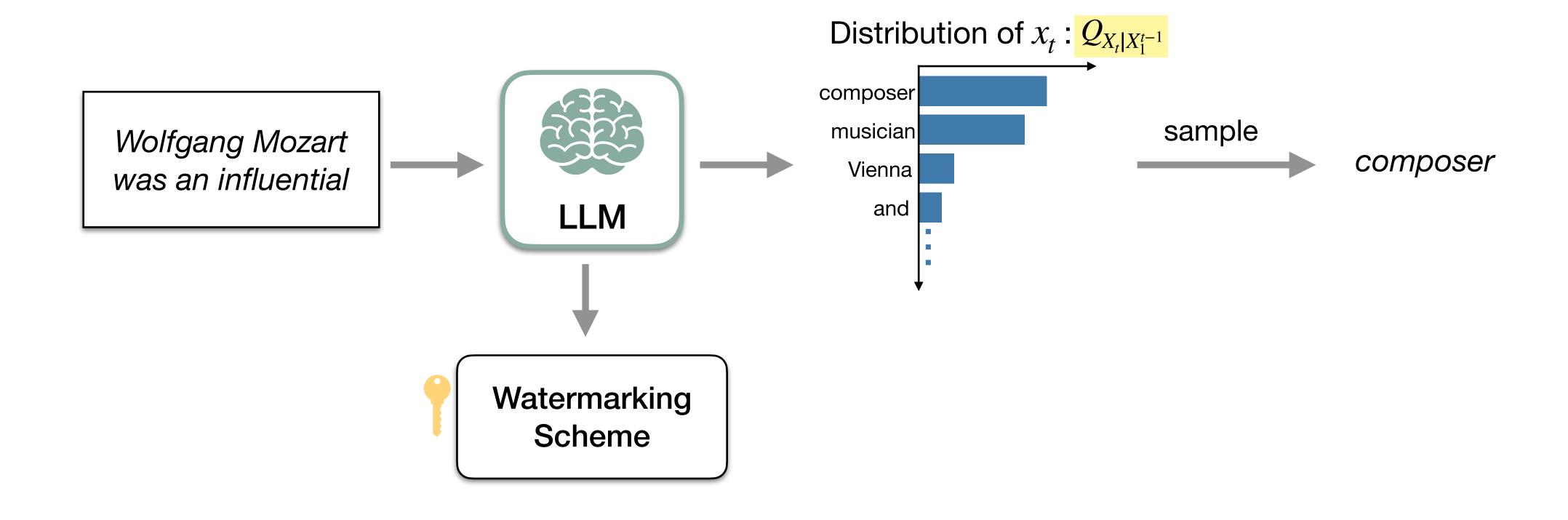
• Watermarking: inserting a signal into LLM predicted tokens

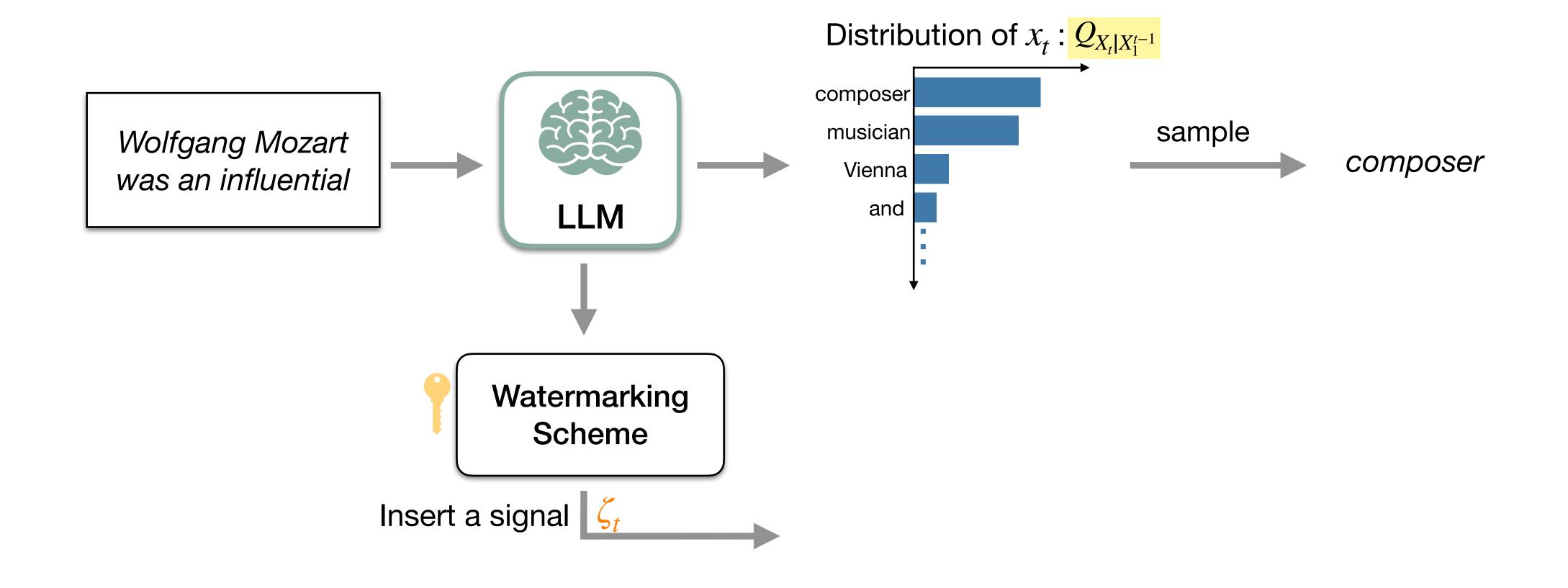


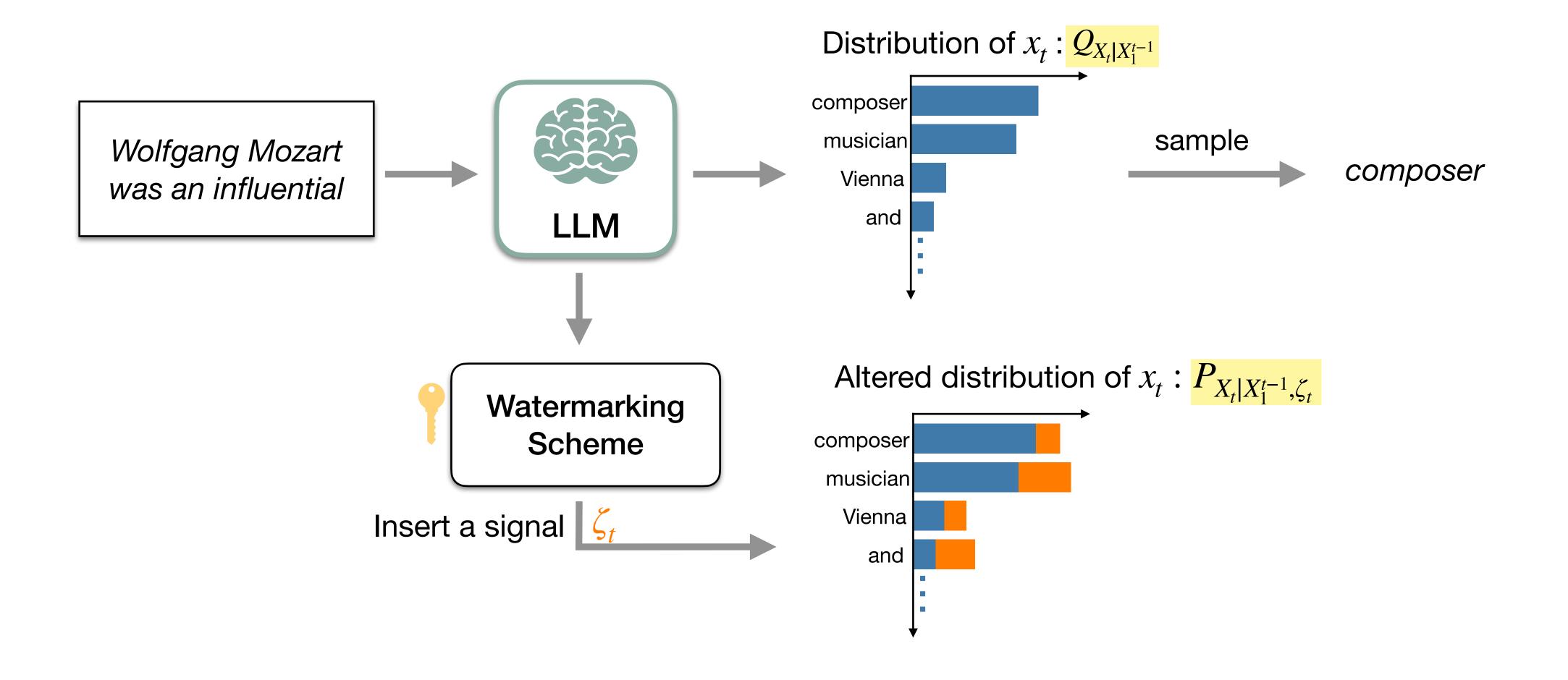


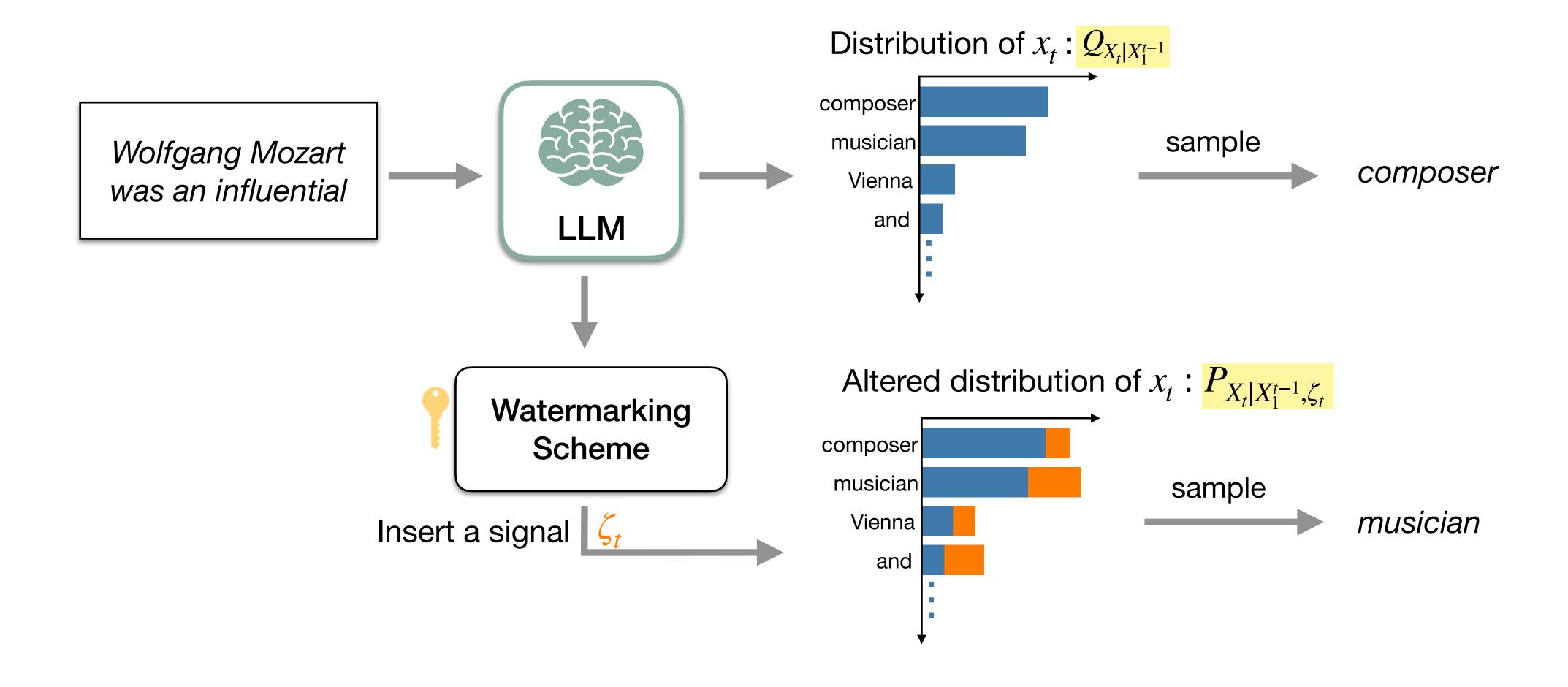


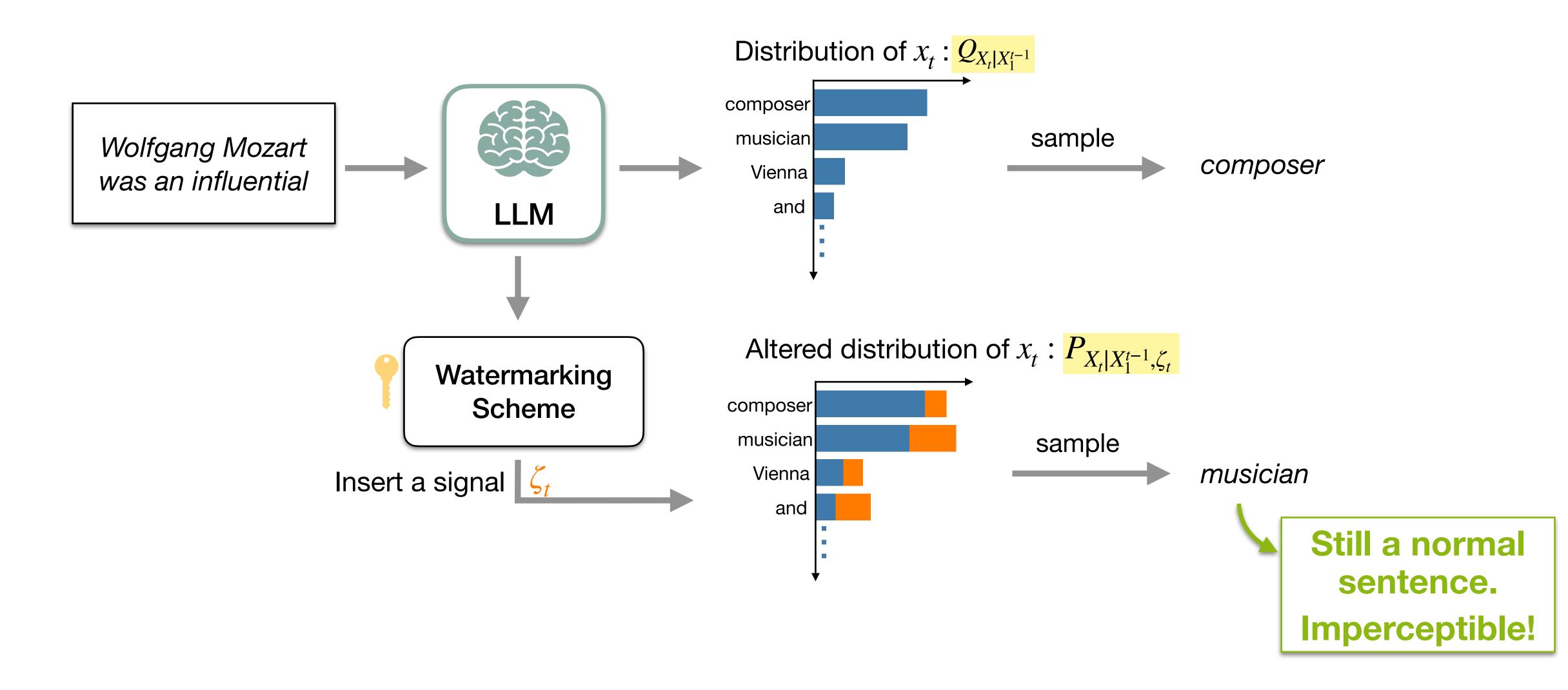


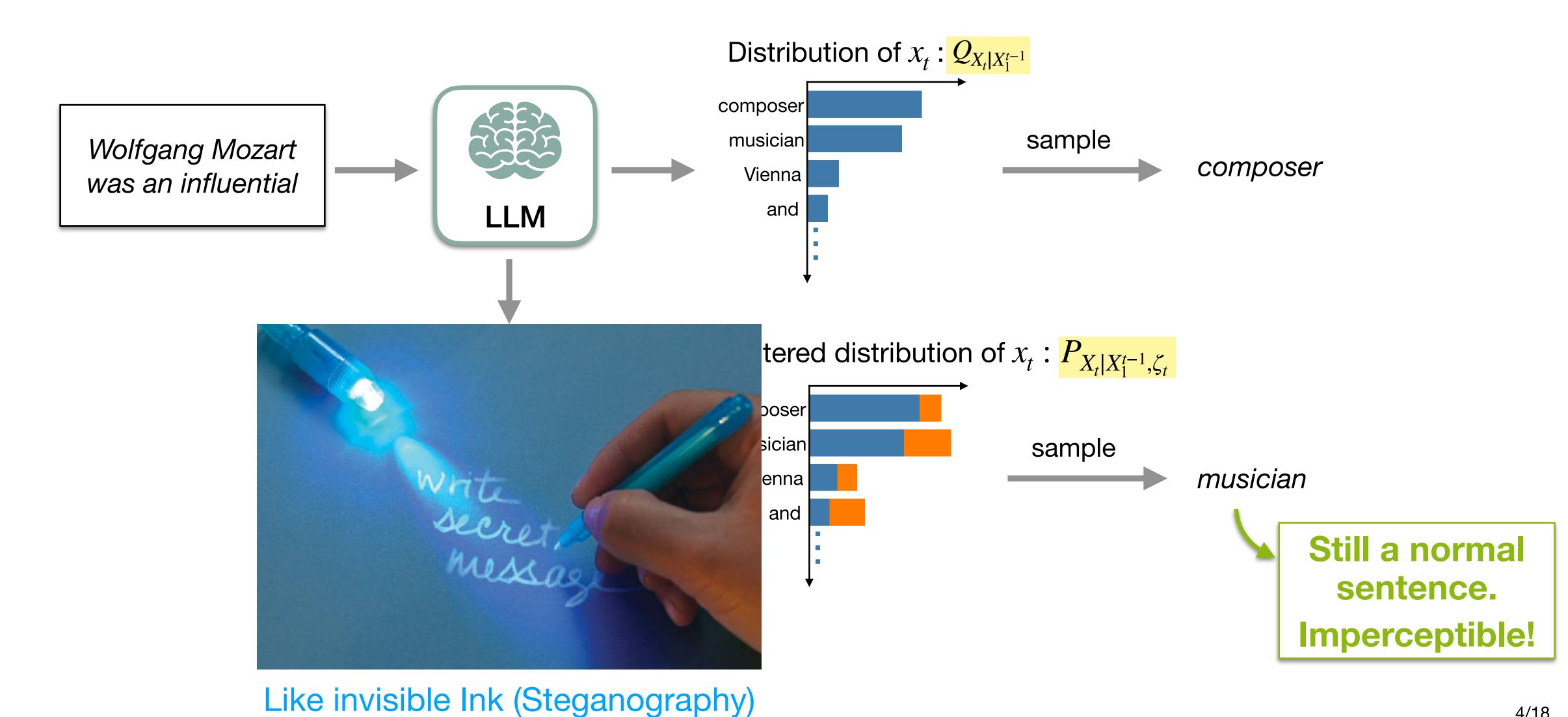


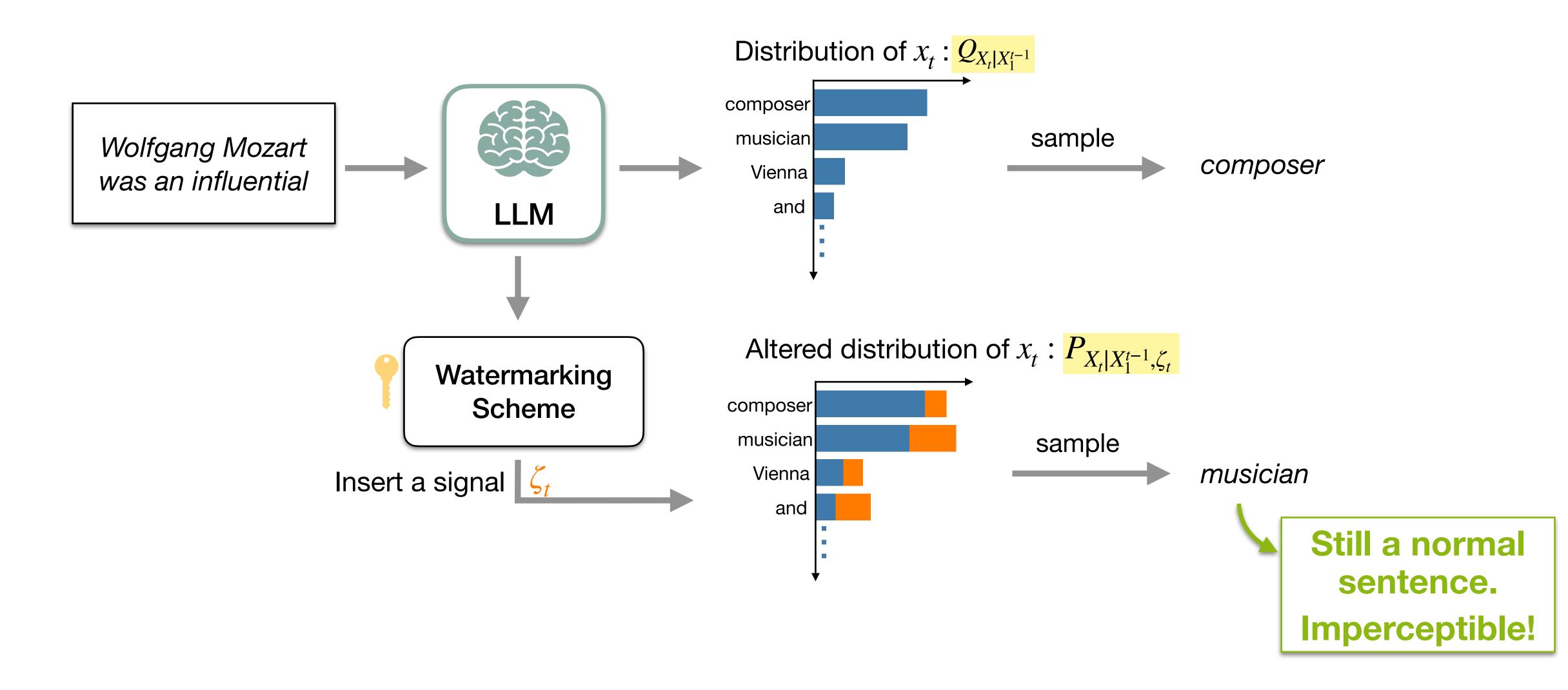


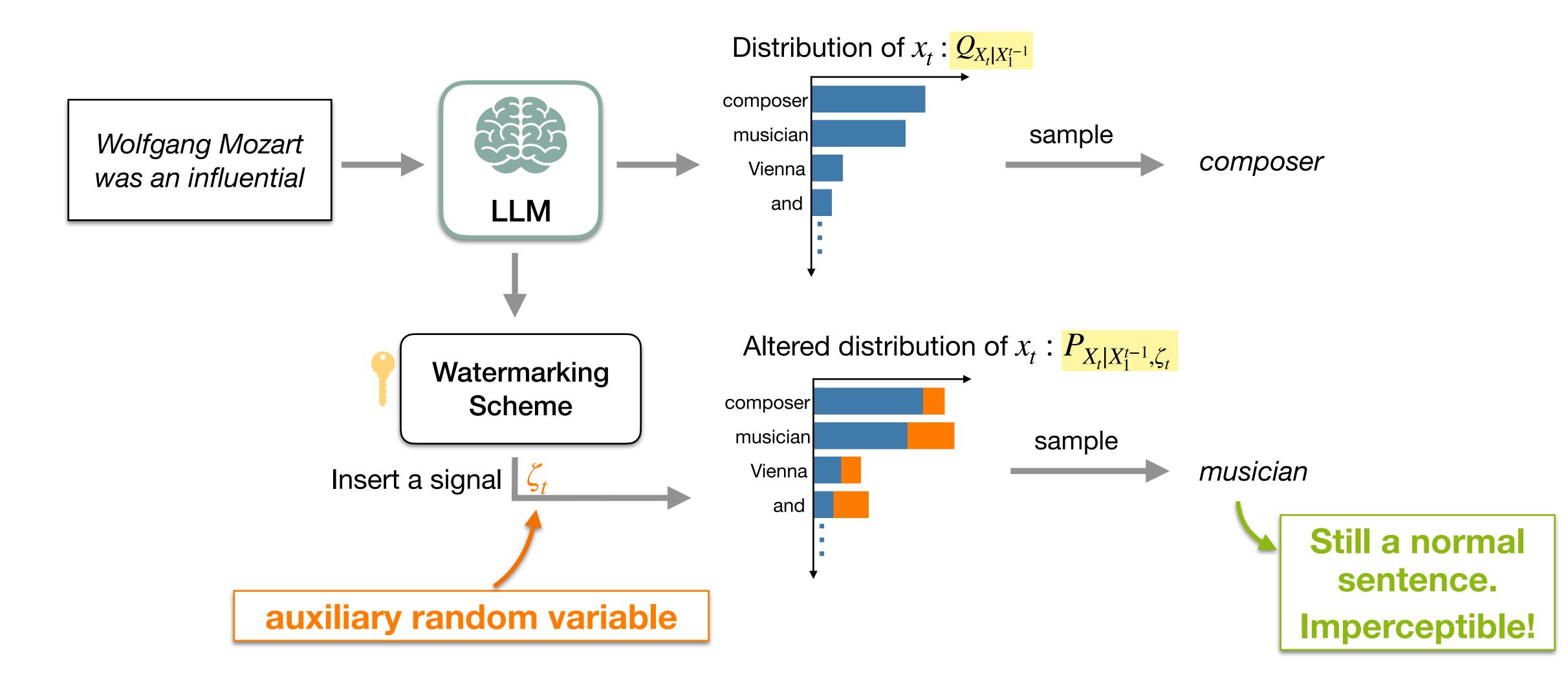


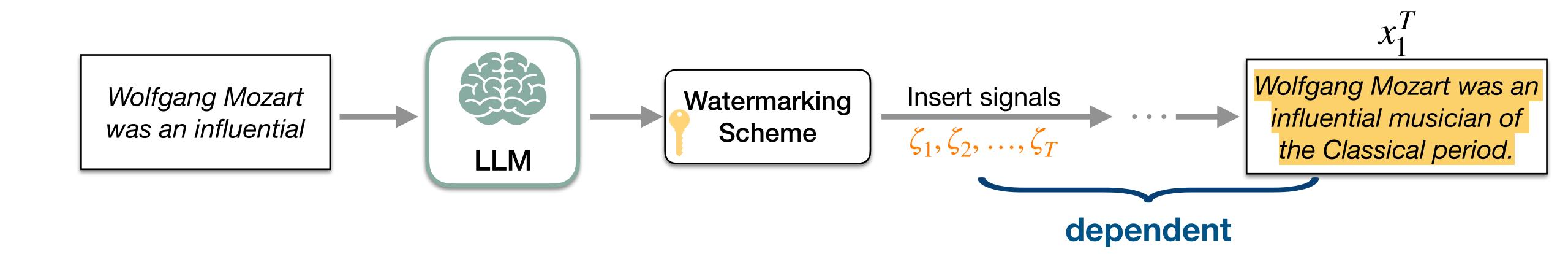


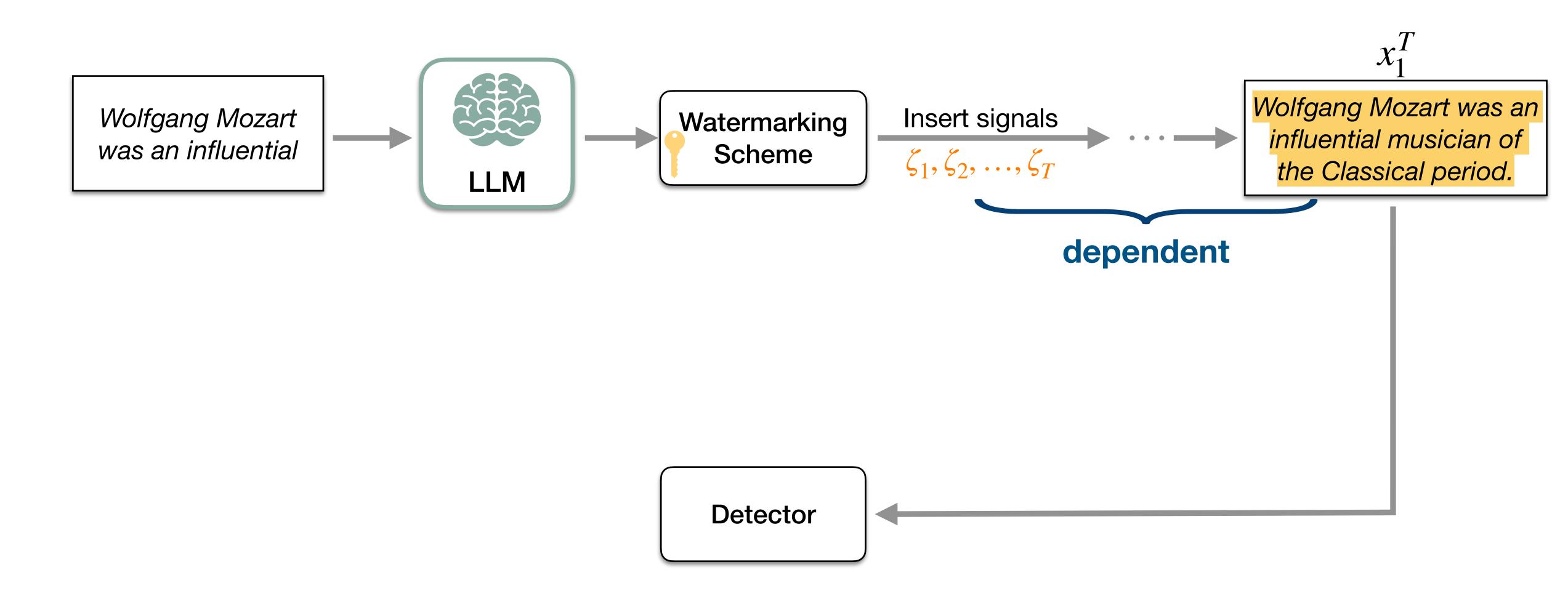


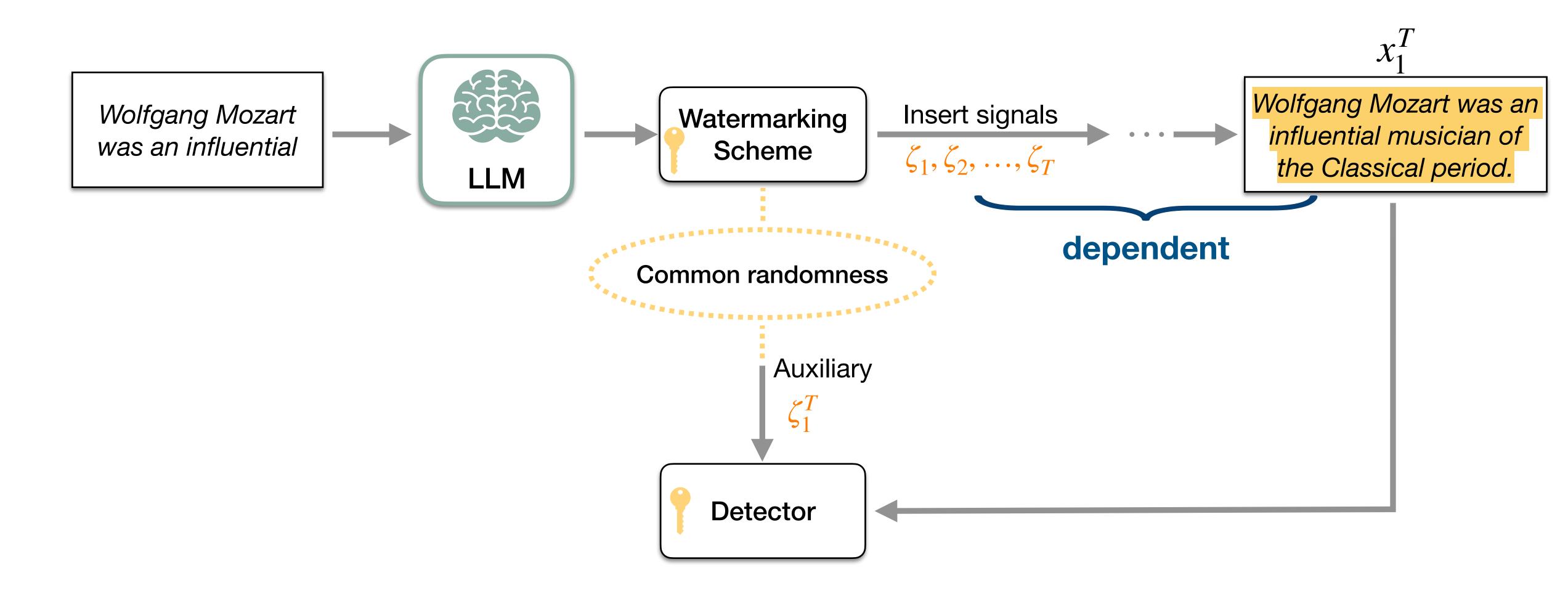


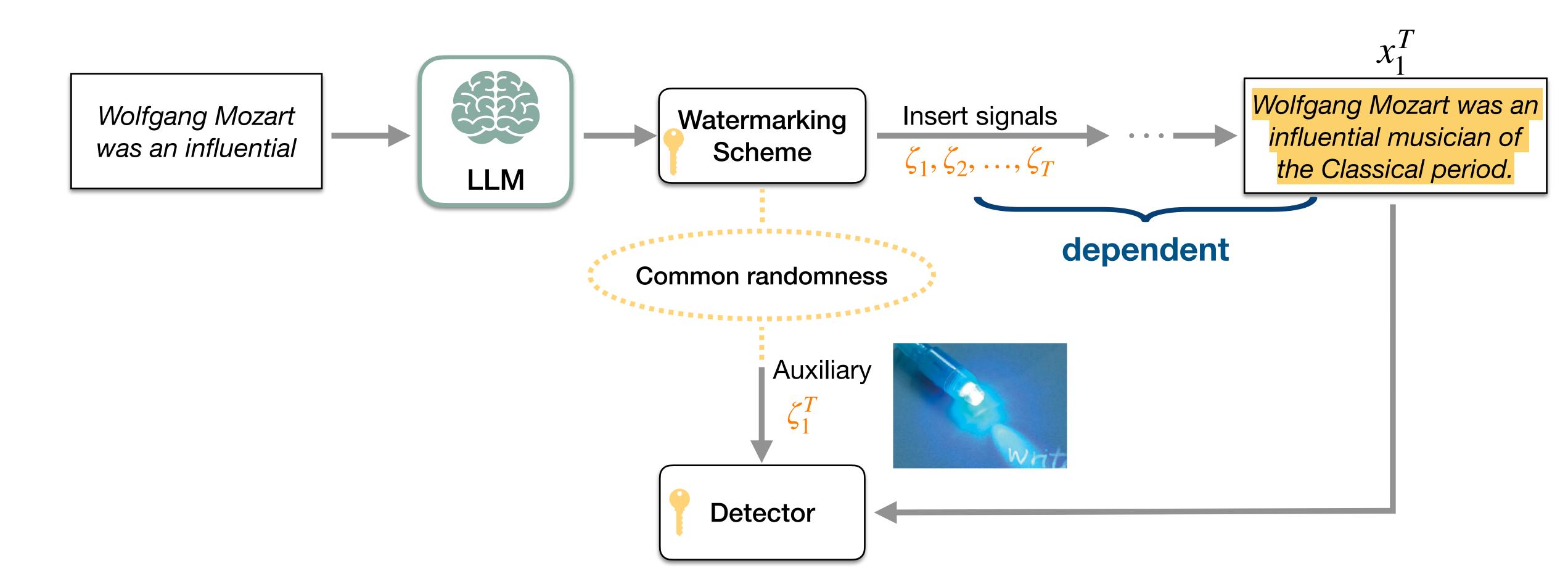


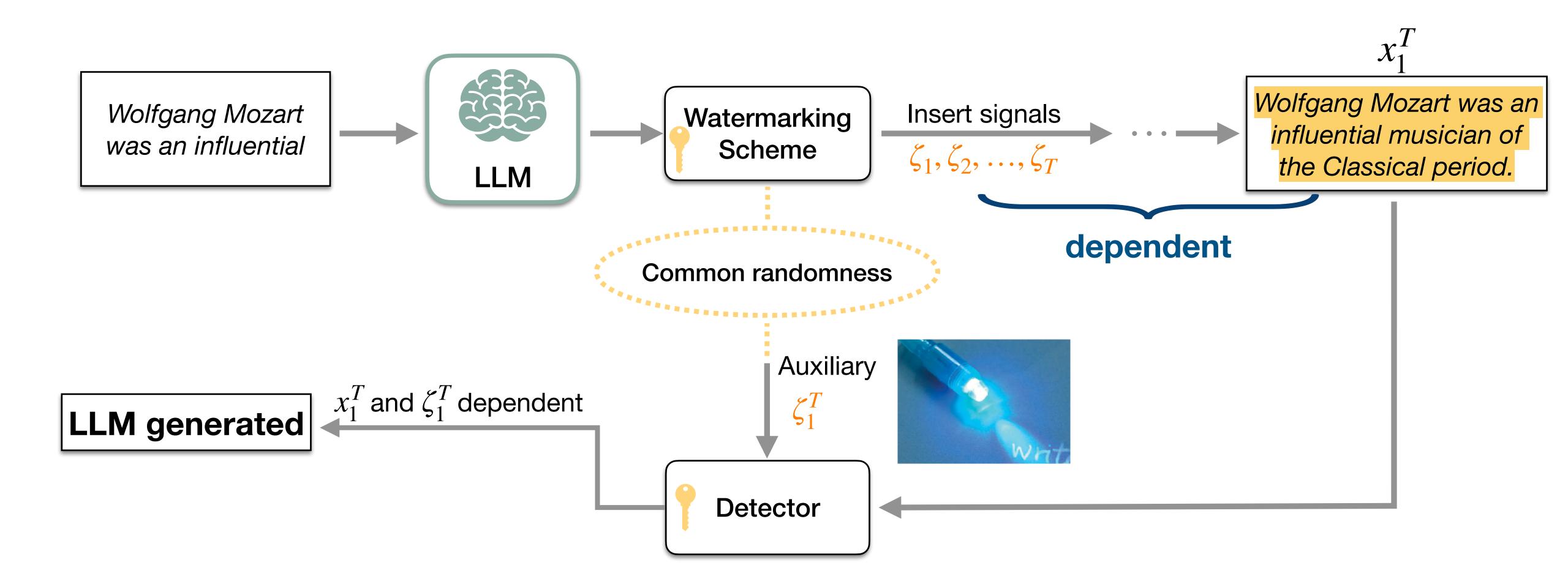


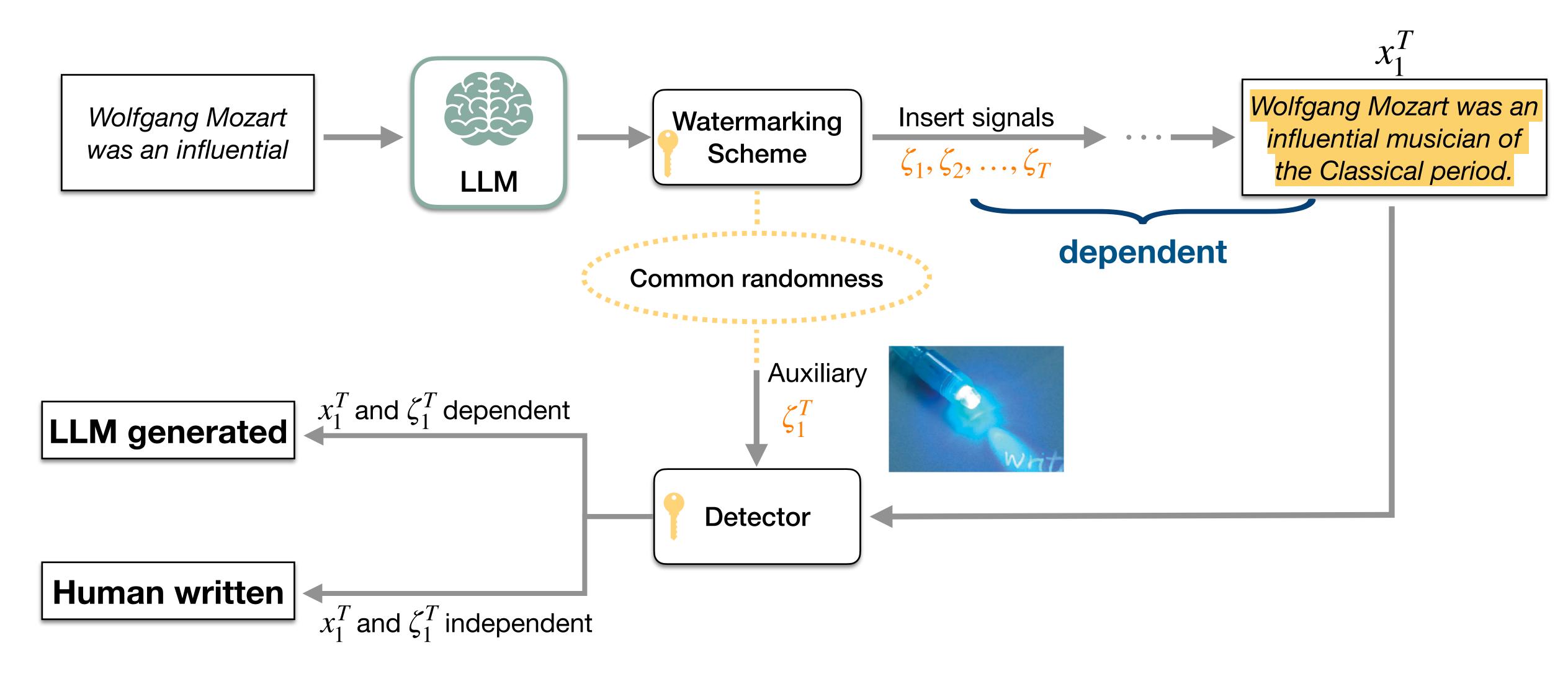


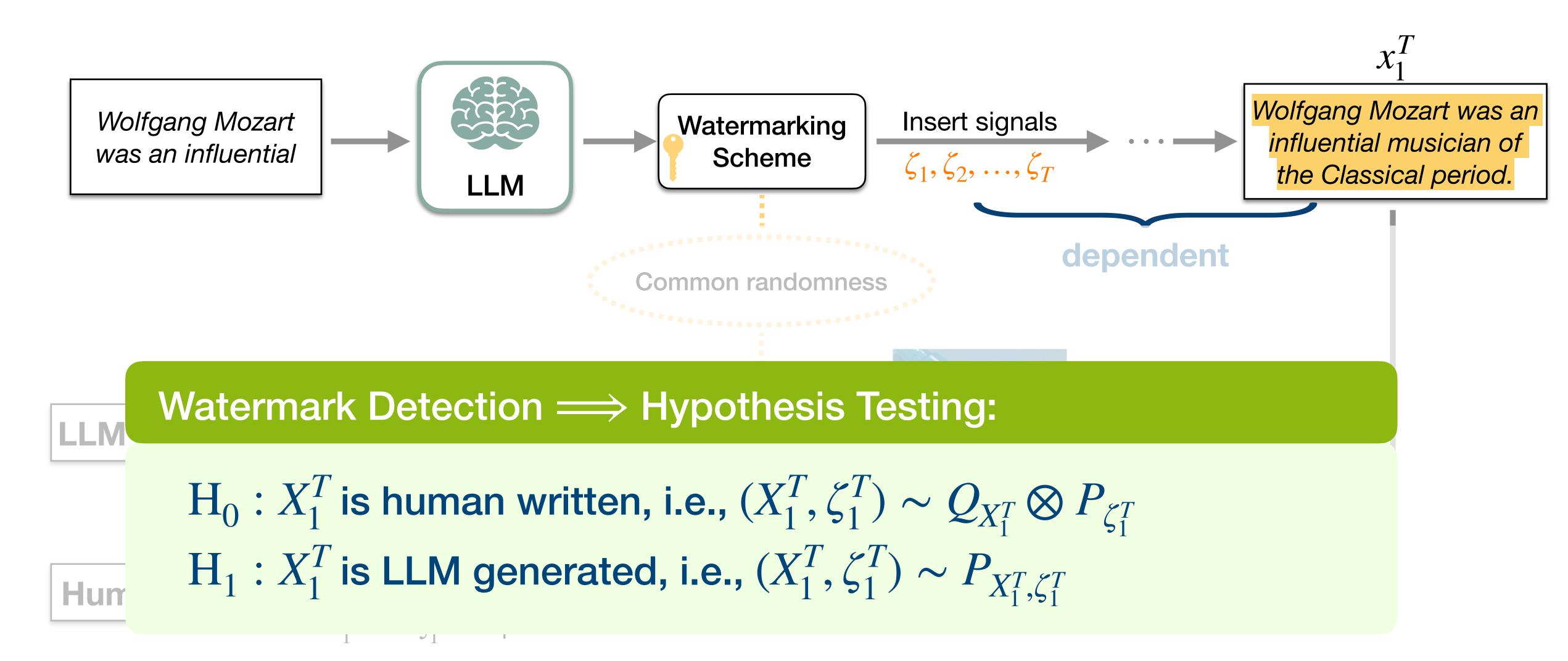












Watermark Detection \Longrightarrow Hypothesis Testing:

 $\mathbf{H}_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

 $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

```
\mathbf{H}_0: X_1^T is human written, i.e., (X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T} \mathbf{H}_1: X_1^T is LLM generated, i.e., (X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}
```

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes Q_{X_1^T}$

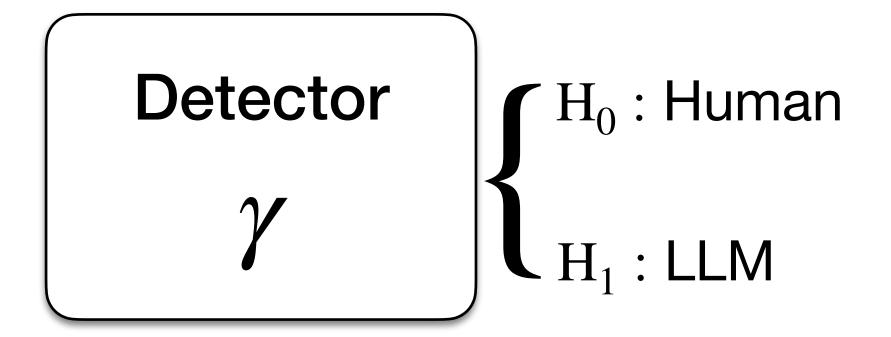
Watermarking scheme

Performance metric:

Watermark Detection \Longrightarrow Hypothesis Testing: Human/unwatermarked LLM $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Performance metric:



Watermark Detection ⇒ Hypothesis Testing: Human/unwatermarked LLM

 $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

 $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Performance metric:

Reality

Detector	H_0 : Human
7	$H_1: LLM$

 H_0 : Human H_1 : LLM

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

 $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

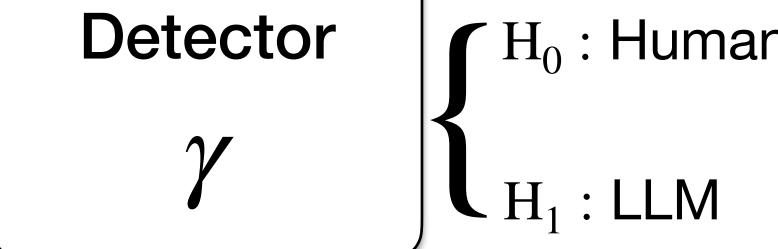
Watermarking scheme

Performance metric:

Reality

 H_0 : Human

 $H_1: LLM$



Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $\mathbf{H}_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

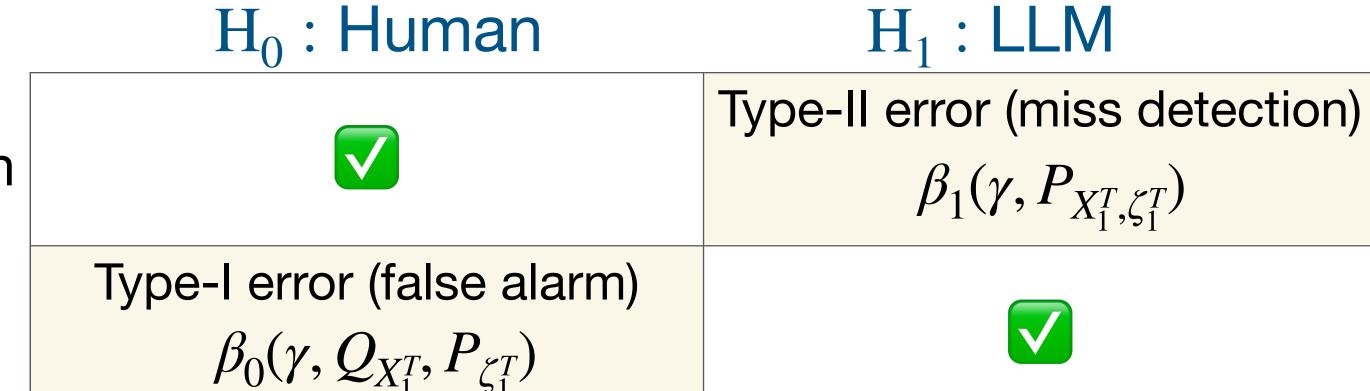
 $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Performance metric:

Reality

Detector	H_0 : Human
7	$H_1: LLM$



Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

 $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Performance metric:

Reality

Type-I error (false alarm) $\beta_0(\gamma,Q_{X_1^T},P_{\zeta_1^T}) \leq \alpha$

 H_0 : Human

 $H_1: LLM$ Type-II error (miss detection) $\min \ eta_1(\gamma, P_{X_1^T, \zeta_1^T})$

Watermark Detection -> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Other criteria for LLM watermarking?

scheme

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $\mathbf{H}_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

scheme

Other criteria for LLM watermarking?

⇒ Text Quality!

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

cheme

Other criteria for LLM watermarking?

⇒ Text Quality!

> Indistinguishable from unwatermarked

Watermark Detection \Longrightarrow Hypothesis Testing: Human/unwatermarked LLM $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

watermarked text distribution $P_{X_1^T}$

Watermark Detection -> Hypothesis Testing: Human/unwatermarked LLM $\mathbf{H}_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes I$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$ Watermarking scheme watermarked text distribution original text distribution VS

watermarked text distribution $P_{X_1^T}$

VS

original text distribution $Q_{X_1^T}$

Good text quality

watermarked text distribution

$$P_{X_1^T}$$

VS

original text distribution $Q_{X_1^T}$

Good text quality

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $\mathbf{H}_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

watermarked text distribution

$$P_{X_1^T}$$

VS

original text distribution

Good text quality

(Distortion Level)

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $\mathbf{H}_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

watermarked text distribution

$$P_{X_1^T}$$

VS

original text distribution

Good text quality

(Distortion Level)

Watermark Detection \Longrightarrow Hypothesis Testing: Human/unwatermarked LLM $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

```
\mathbf{H}_0: X_1^T is human written, i.e., (X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T} \mathbf{H}_1: X_1^T is LLM generated, i.e., (X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}
```

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Trade-off:

$$\beta_1 - \alpha - \epsilon$$

Watermark Detection \Longrightarrow Hypothesis Testing: Human/unwatermarked LLM $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermark Detection \Longrightarrow Hypothesis Testing: Human/unwatermarked LLM $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Existing watermarking methods: heuristic

Watermarking scheme

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Existing watermarking methods: heuristic

Watermarking scheme

Example [KGW-1, 2023]

No watermark
Extremely efficient on average term
lengths and word frequencies on
synthetic, microamount text (as little
as 25 words)
Very small and low-resource key/hash
(e.g., 140 bits per key is sufficient
for 99.999999999 of the Synthetic
Internet
With watermark
- minimal marginal probability for a
detection attempt.
- Good speech frequency and energy
rate reduction.
- messages indiscernible to humans.
- easy for humans to verify.

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

 $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes I$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Existing watermarking methods: heuristic

Example [KGW-1, 2023]

No watermark
Extremely efficient on average term
lengths and word frequencies on
synthetic, microamount text (as little
as 25 words)
Very small and low-resource key/hash
(e.g., 140 bits per key is sufficient
for 99.9999999999 of the Synthetic
Internet
With watermark
- minimal marginal probability for a
detection attempt.
- Good speech frequency and energy
rate reduction.
- messages indiscernible to humans.
- easy for humans to verify.

a word←randomly assign green/red color

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Existing watermarking methods: heuristic

Watermarking scheme

Example [KGW-1, 2023]

No watermark		
Extremely efficient on average term		
lengths and word frequencies on		
synthetic, microamount text (as little		
as 25 words)		
Very small and low-resource key/hash		
(e.g., 140 bits per key is sufficient		
for 99.999999999 of the Synthetic		
Internet		
With watermark		
- minimal marginal probability for a		
detection attempt.		
- Good speech frequency and energy		
rate reduction.		
- messages indiscernible to humans.		
- easy for humans to verify.		

a word←randomly assign green/red color

Green word: increase sampling probability

Watermark Detection ⇒ Hypothesis Testing: Human/unwatermarked LLM

$$H_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Existing watermarking methods: heuristic

Watermarking scheme

Example [KGW-1, 2023]

No watermark Extremely efficient on average term lengths and word frequencies on synthetic, microamount text (as little as 25 words) Very small and low-resource key/hash (e.g., 140 bits per key is sufficient Internet With watermark - minimal marginal probability for a detection attempt. - Good speech frequency and energy rate reduction. messages indiscernible to humans. - easy for humans to verify.

High miss detection when requiring low false alarm

Watermark Detection ⇒ Hypothesis Testing: Human/unwatermarked LLM

$$H_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$

$$H_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Existing watermarking methods: heuristic

Watermarking scheme

Example [KGW-1, 2023]

No watermark
Extremely efficient on average term
lengths and word frequencies on
synthetic, microamount text (as little
as 25 words)
Very small and low-resource key/hash
(e.g., 140 bits per key is sufficient
for 99.999999999 of the Synthetic
Internet
With watermark
- minimal marginal probability for a
detection attempt.
- Good speech frequency and energy
rate reduction.
- messages indiscernible to humans.
- easy for humans to verify.

High miss detection when requiring low false alarm
Not distortion-free

Watermark Detection \Longrightarrow Hypothesis Testing: Human/unwatermarked LLM $H_0: X_1^T$ is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $H_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$ Watermarking scheme

Find the best watermarking scheme & detector:

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Find the best watermarking scheme & detector:

$$\rightarrow \min_{\gamma, \ P_{X_1^T, \zeta_1^T} }$$

Minimize miss detection
$$+\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

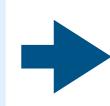
$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Find the best watermarking scheme & detector:

$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

Humans are very creative, can write arbitrary texts



Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

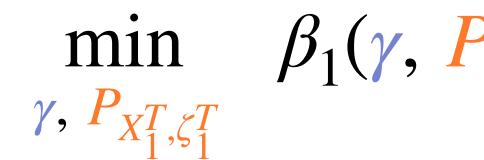
$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

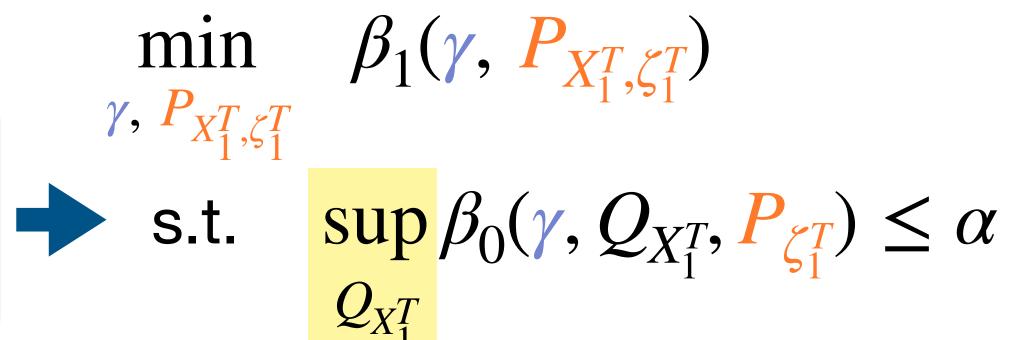
$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Find the best watermarking scheme & detector:

Humans are very creative, can write arbitrary texts





Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Find the best watermarking scheme & detector:

$$\min_{\substack{\gamma,\ P_{X_1^T,\zeta_1^T}\\ \text{s.t.}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

$$\sup_{\substack{Q_{X_1^T}\\ \text{s.t.}}} \beta_0(\gamma,\ Q_{X_1^T},\ P_{\zeta_1^T}) \leq \alpha$$

Ensure text quality

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

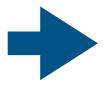
$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Find the best watermarking scheme & detector:

$$\min_{\substack{\gamma,\ P_{X_1^T,\zeta_1^T}\\ \text{s.t.}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$
 s.t.
$$\sup_{\substack{Q_{X_1^T}\\ \text{s.t.}}} \beta_0(\gamma,\ Q_{X_1^T},\ P_{\zeta_1^T}) \leq \alpha$$

Ensure text quality



$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

Watermark Detection ==> Hypothesis Testing: Human/unwatermarked LLM

$$\mathbf{H}_0: X_1^T$$
 is human written, i.e., $(X_1^T, \zeta_1^T) \sim Q_{X_1^T} \otimes P_{\zeta_1^T}$ $\mathbf{H}_1: X_1^T$ is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

$$\mathbf{H}_1: X_1^T$$
 is LLM generated, i.e., $(X_1^T, \zeta_1^T) \sim P_{X_1^T, \zeta_1^T}$

Watermarking scheme

Find the best watermarking scheme & detector:

$$\min_{\substack{\gamma,\ P_{X_1^T,\zeta_1^T}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$
s.t.
$$\sup_{\substack{Q_{X_1^T}}} \beta_0(\gamma,\ Q_{X_1^T},\ P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T},\ Q_{X_1^T}) \leq \epsilon$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T}} \boldsymbol{\beta}_1(\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T})$$
 s.t.
$$\sup_{\boldsymbol{Q}_{X_1^T}} \boldsymbol{\beta}_0(\boldsymbol{\gamma},\ Q_{X_1^T},\ P_{\boldsymbol{\zeta}_1^T}) \leq \alpha$$

$$D(P_{X_1^T},\ Q_{X_1^T}) \leq \epsilon$$

Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$

Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \quad \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t. $\sup_{l} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

♦ Minimum Type-II error:

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$

Best achievable for any watermarking methods

Same as Huang et al. (2023, Theorem 3.2) but under different framework

Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$

Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \quad \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$

Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

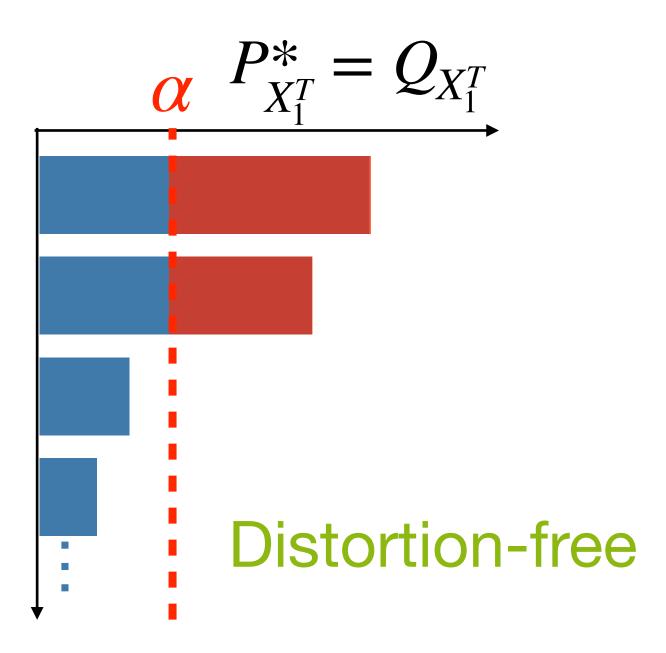
Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \quad \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$



Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

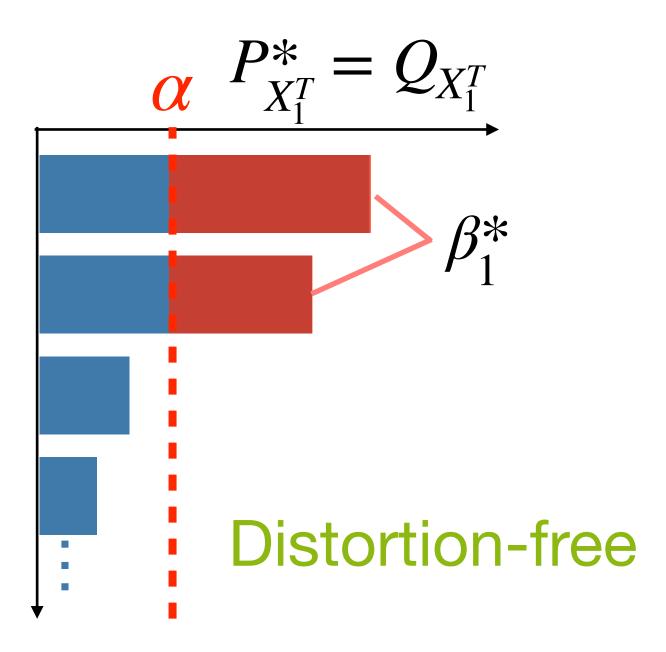
Optimization problem:

$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$



Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

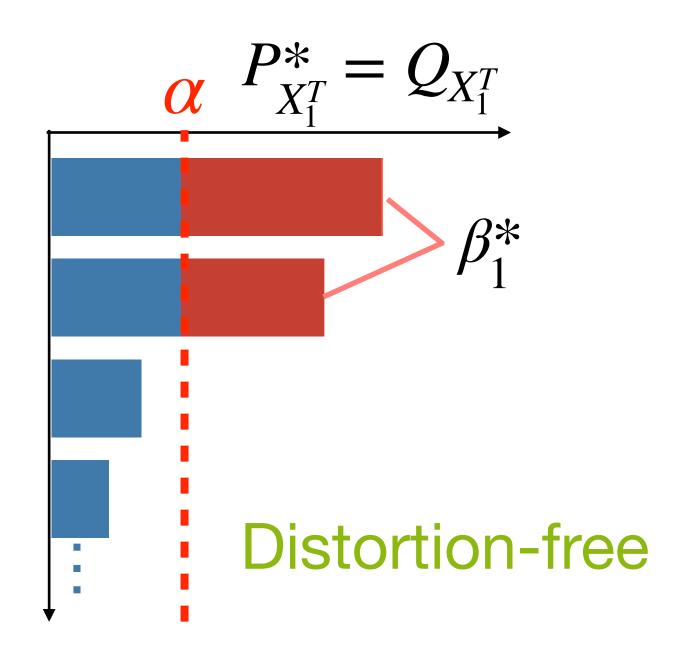
Optimization problem:

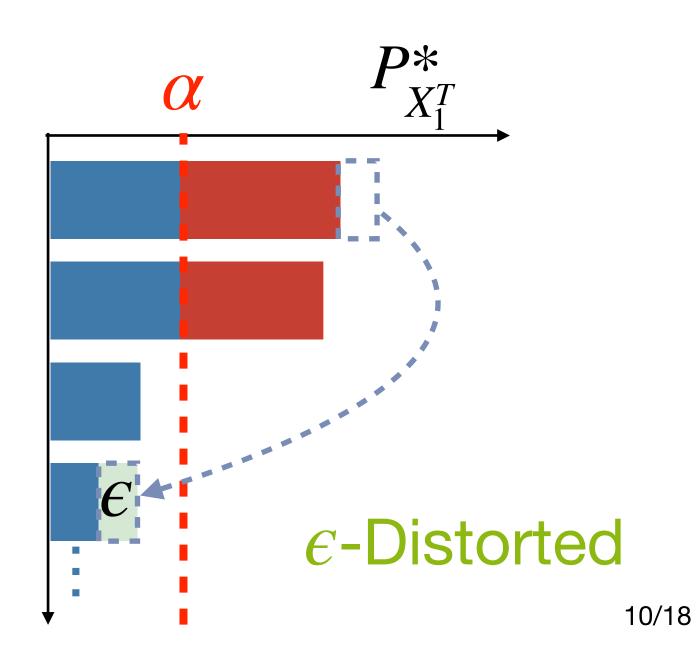
$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$





Watermarked text distribution:
$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

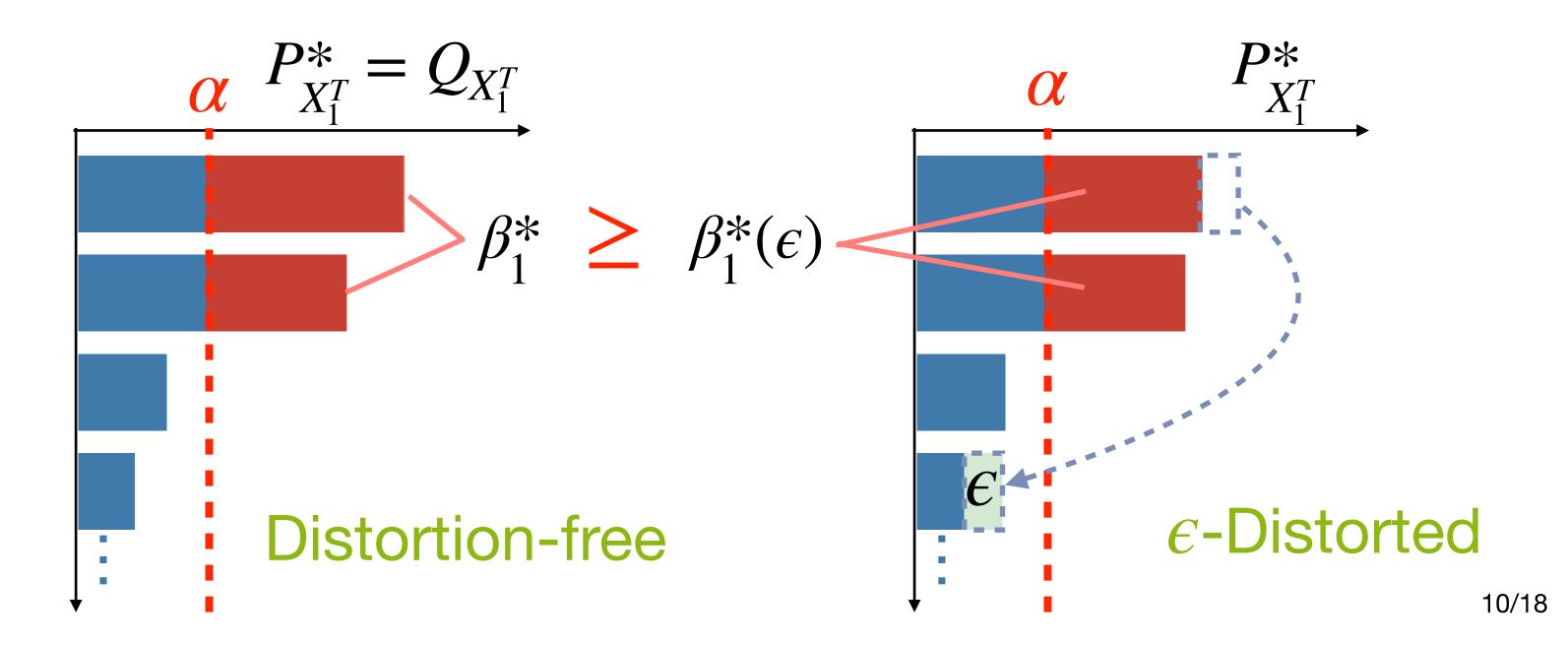
Optimization problem:

$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1^*(Q_{X_1^T}, \alpha, \epsilon) = \sum_{x_1^T} (P_{X_1^T}^*(x_1^T) - \alpha)_+$$



Optimization problem:

$$\min_{\boldsymbol{\gamma},\;P_{X_1^T,\boldsymbol{\zeta}_1^T}} \beta_1(\boldsymbol{\gamma},\;P_{X_1^T,\boldsymbol{\zeta}_1^T})$$
s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\boldsymbol{\gamma},\;Q_{X_1^T},\;P_{\boldsymbol{\zeta}_1^T}) \leq \alpha$$

$$D(P_{X_1^T},\;Q_{X_1^T}) \leq \epsilon$$

 \spadesuit Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\zeta_1^T}$:

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \quad \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t. $\sup_{Q_{\mathbf{Y}^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \le \alpha$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \quad \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

♦ Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T,\zeta_1^T}^*$$
:

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

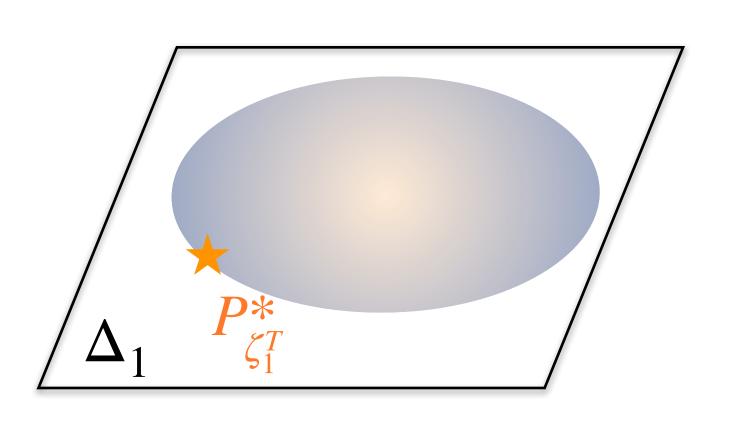
s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha \quad (\Delta_1)$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T,\zeta_1^T}^*$$
:



lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\zeta_1^T}$:

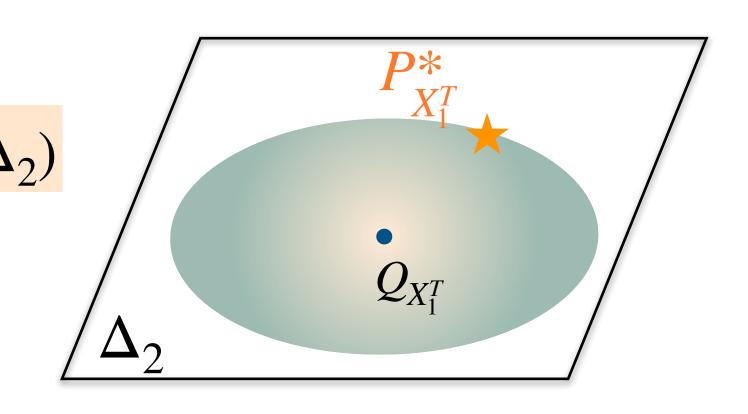
$$\min_{\boldsymbol{\gamma},\ \boldsymbol{P}_{\boldsymbol{X}_{1}^{T},\boldsymbol{\zeta}_{1}^{T}}} \beta_{1}(\boldsymbol{\gamma},\ \boldsymbol{P}_{\boldsymbol{X}_{1}^{T},\boldsymbol{\zeta}_{1}^{T}})$$

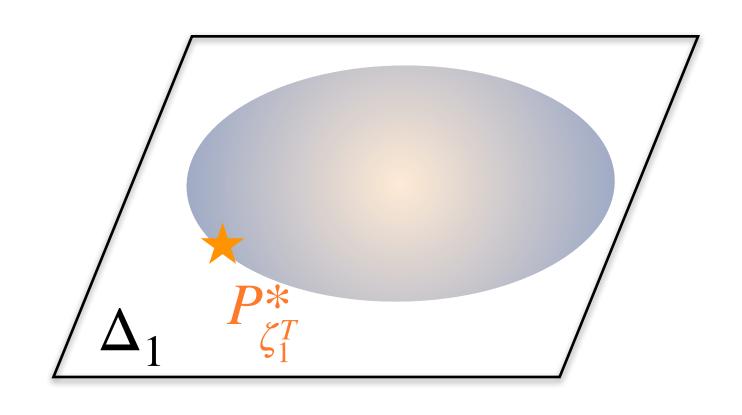
s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha \quad (\Delta_1)$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$P^*_{X_1^T,\zeta_1^T}$$
 :

 $\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$





for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

Optimization problem:

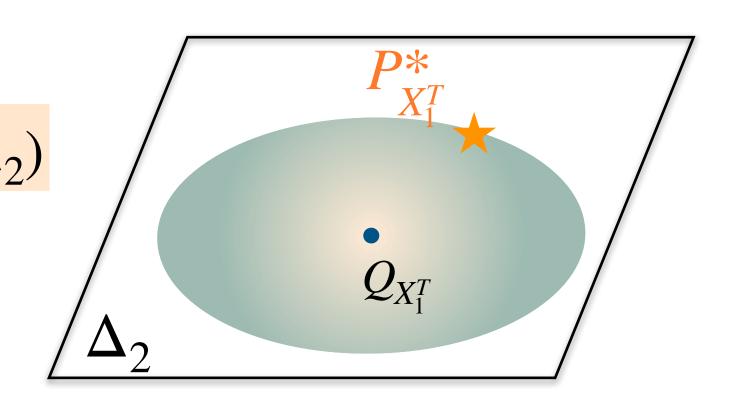
$$\min_{\gamma, P_{\mathbf{Y}T, \zeta_1^T}} \beta_1(\gamma, P_{X_1^T, \zeta_1^T}) = \mathbb{E}_{P_{X_1^T, \zeta_1^T}} [1 - \gamma(X_1^T, \zeta_1^T)]$$

s.t. $\sup_{\Omega} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha \quad (\Delta_1)$

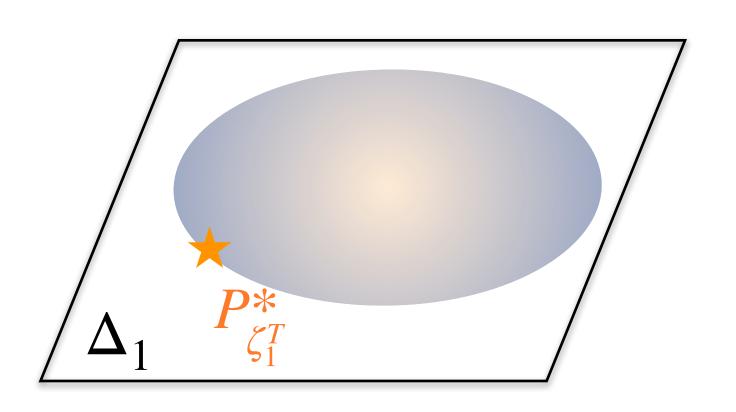
$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\beta_1(\gamma, P_{X_1^T, \zeta_1^T}) = \mathbb{E}_{P_{X_1^T, \zeta_1^T}}[1 - \gamma(X_1^T, \zeta_1^T)]$$

$$P_{X_{1}^{T},\zeta_{1}^{T}}^{*}:$$



 $\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$



for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

Optimization problem:

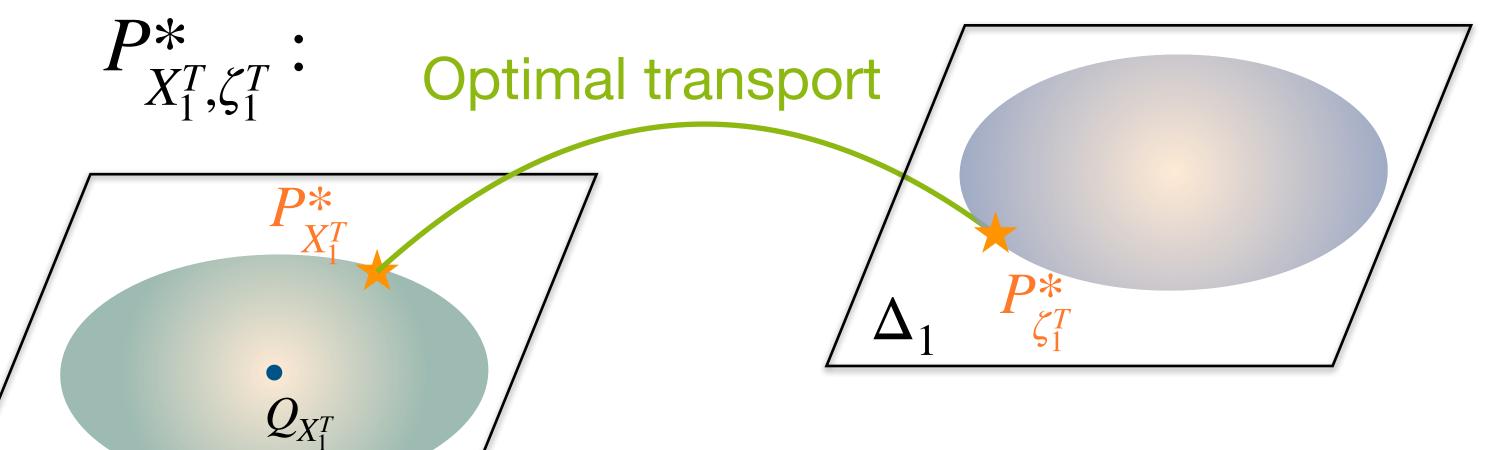
$$\min_{\substack{\gamma,\ P_{XT,\zeta T}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T}) = \mathbb{E}_{P_{X_1^T,\zeta_1^T}}[1 - \gamma(X_1^T,\zeta_1^T)]$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha \qquad (\Delta_1)$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$

for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$



$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

 \spadesuit Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\zeta_1^T}$:

Optimization problem:

$$\min_{\substack{\gamma,\ P_{\mathbf{Y}^T,\zeta_1^T}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T}) = \mathbb{E}_{P_{X_1^T,\zeta_1^T}}[1 - \gamma(X_1^T,\zeta_1^T)]$$

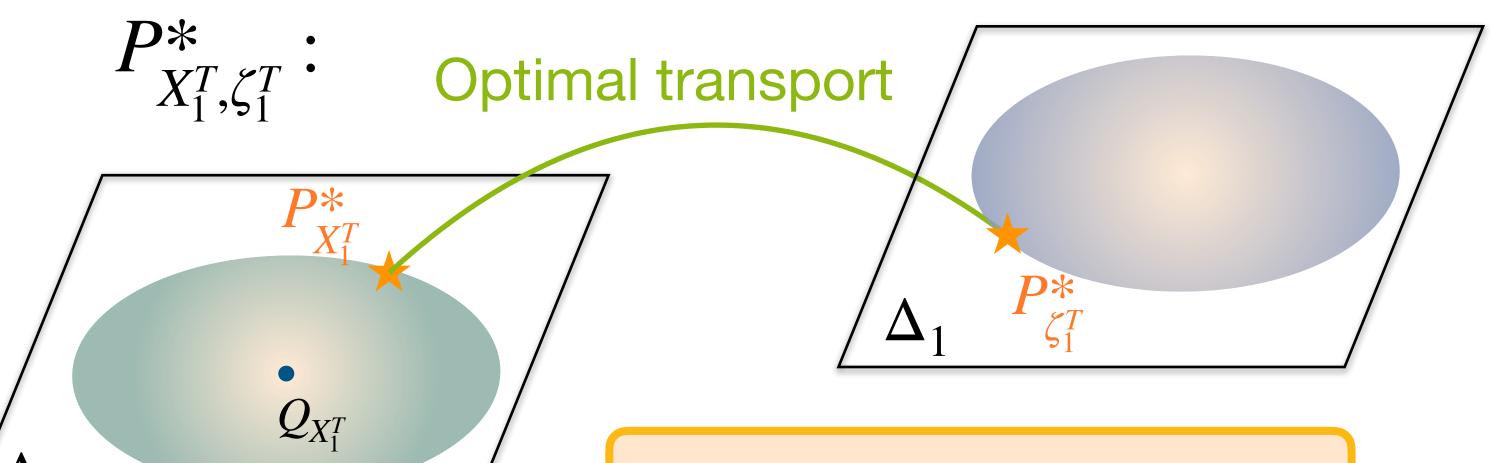
s.t. $\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha \qquad (\Delta_1)$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
for some suri

for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

Construction is actually easy.



$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \le \alpha \qquad P_{X_1^T, \zeta_1^T}^* :$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\zeta_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T,\zeta_1^T}^*$$
:

$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ \boldsymbol{P}_{\boldsymbol{X}_{1}^{T},\boldsymbol{\zeta}_{1}^{T}}} \beta_{1}(\boldsymbol{\gamma},\ \boldsymbol{P}_{\boldsymbol{X}_{1}^{T},\boldsymbol{\zeta}_{1}^{T}})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\zeta_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T,\zeta_1^T}^*$$
 :

$$(T = 1)$$

$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

 \bullet Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$

for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

..... redundant $\tilde{\zeta}$

$$P_{X_1^T}^* = \arg\min_{P_{X_1^T}: D(P_{X_1^T}, Q_{X_1^T}) \le \epsilon} \sum_{x_1^T} (P_{X_1^T}(x_1^T) - \alpha)_+$$

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

♦ Jointly optimal detector γ^* and watermarking scheme $P_{X_1^T,\mathcal{L}_1^T}^*$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P_{X_1^T,\zeta_1^T}^*$$
:

Optimization problem:

$$\min_{\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T}} \quad \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\zeta_1^T})$$

s.t. $\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

 \spadesuit Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\zeta_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P^*_{X_1^T,\zeta_1^T}$$
 : $P^*_{\zeta_1^T}$ adaptive to original LLM predicted distribution $Q_{X_1^T}$

Optimization problem:

$$\min_{\gamma,\ P_{X_1^T,\zeta_1^T}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T})$$

s.t.
$$\sup_{Q_{X_1^T}} \beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}) \leq \alpha$$

$$D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$$

lacktriangle Jointly optimal detector γ^* and watermarking scheme $P^*_{X_1^T,\mathcal{L}_1^T}$:

$$\gamma^* = \mathbf{1}\{X_1^T = g(\zeta_1^T)\}$$
 for some surjective $g: \mathcal{Z}^T \to \mathcal{S} \supset \mathcal{V}^T$

$$P^*_{X_1^T,\zeta_1^T}$$
 : $P^*_{\zeta_1^T}$ adaptive to original LLM predicted distribution $Q_{X_1^T}$

Unlike existing watermarking methods

ullet Previous optimal result holds for fixed $T\Rightarrow$ unable to implement dynamically

- Previous optimal result holds for fixed $T\Rightarrow$ unable to implement dynamically
- Solution: implement it token by token

- Previous optimal result holds for fixed $T\Rightarrow$ unable to implement dynamically
- Solution: implement it token by token

Detector:

Sequence-Level Optimal to Token-Level Optimal

- Previous optimal result holds for fixed $T\Rightarrow$ unable to implement dynamically
- Solution: implement it token by token

Detector:

$$\gamma_{tk} = \mathbf{1} \left\{ \frac{1}{T} \sum_{t=1}^{T} \mathbf{1} \{ X_t = g(\zeta_t) \} \ge \lambda \right\} \text{ for some surjective } g : \mathcal{Z} \to \mathcal{S} \supset \mathcal{V}$$

Sequence-Level Optimal to Token-Level Optimal

- Previous optimal result holds for fixed $T\Rightarrow$ unable to implement dynamically
- Solution: implement it token by token

Detector:

$$\gamma_{tk} = \mathbf{1} \left\{ \frac{1}{T} \sum_{t=1}^{T} \mathbf{1} \{ X_t = g(\zeta_t) \} \ge \lambda \right\} \text{ for some surjective } g : \mathcal{Z} \to \mathcal{S} \supset \mathcal{V}$$

Watermarking scheme:

$$P_{X_1^T,\zeta_1^T}^* \to P_{X_t,\zeta_t|X_1^{t-1},\zeta_1^{t-1}}^*, \forall t=1,2,...,T$$

Sequence-Level Optimal to Token-Level Optimal

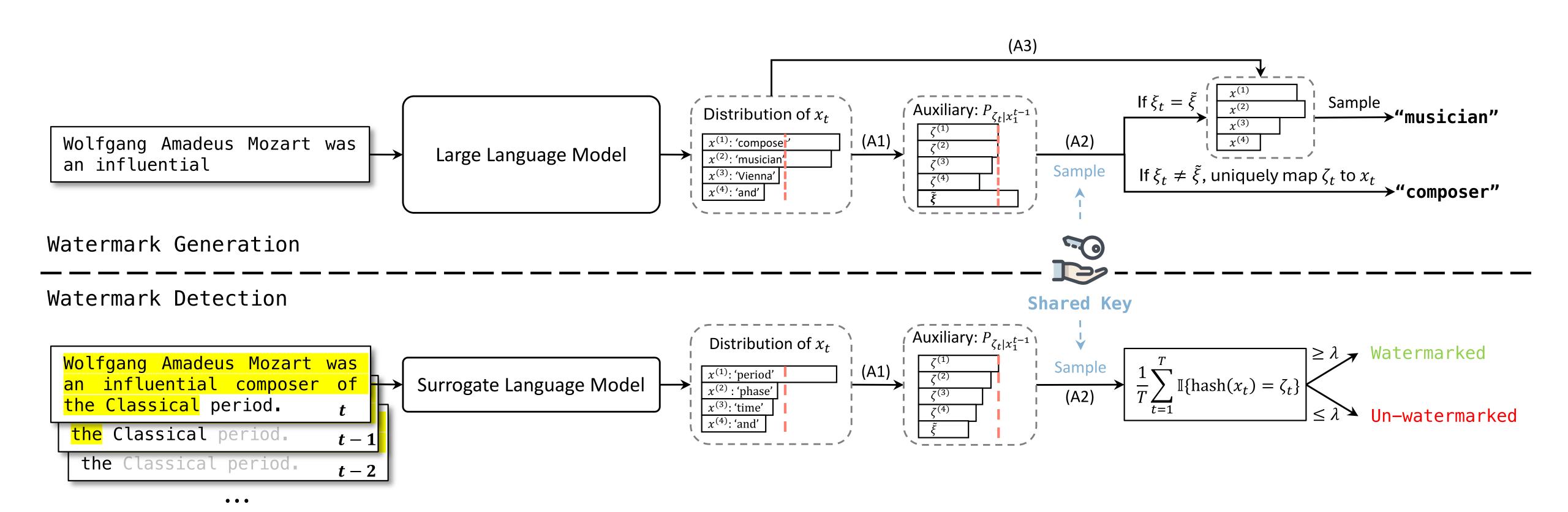
- Previous optimal result holds for fixed $T \Rightarrow$ unable to implement dynamically
- Solution: implement it token by token

Detector:

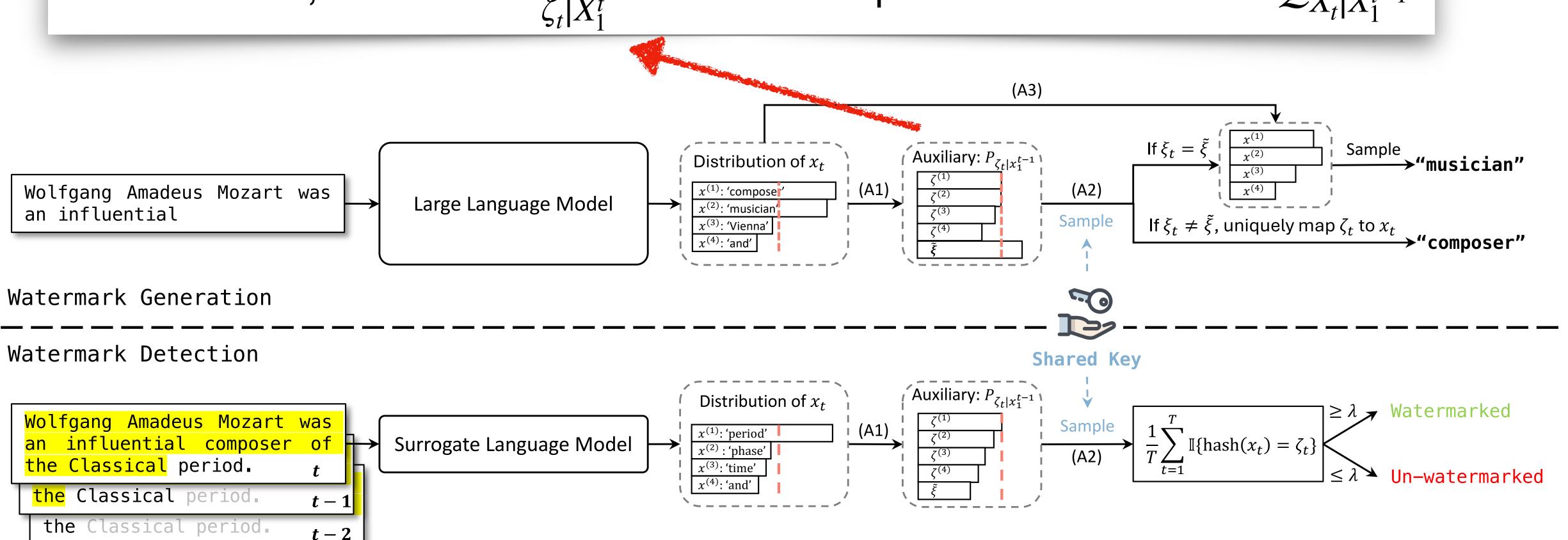
$$\gamma_{tk} = \mathbf{1} \left\{ \frac{1}{T} \sum_{t=1}^{T} \mathbf{1} \{ X_t = g(\zeta_t) \} \ge \lambda \right\} \text{ for some surjective } g : \mathcal{Z} \to \mathcal{S} \supset \mathcal{V}$$

Watermarking scheme:

arking
$$P_{X_1^T,\zeta_1^T}^* \to P_{X_t,\zeta_t|X_1^{t-1},\zeta_1^{t-1}}^*, \forall t=1,2,\ldots,T$$
 dependent dependent Sequence-level false alarm rate $\eta \xrightarrow{controls}$ Sequence-level false alarm α



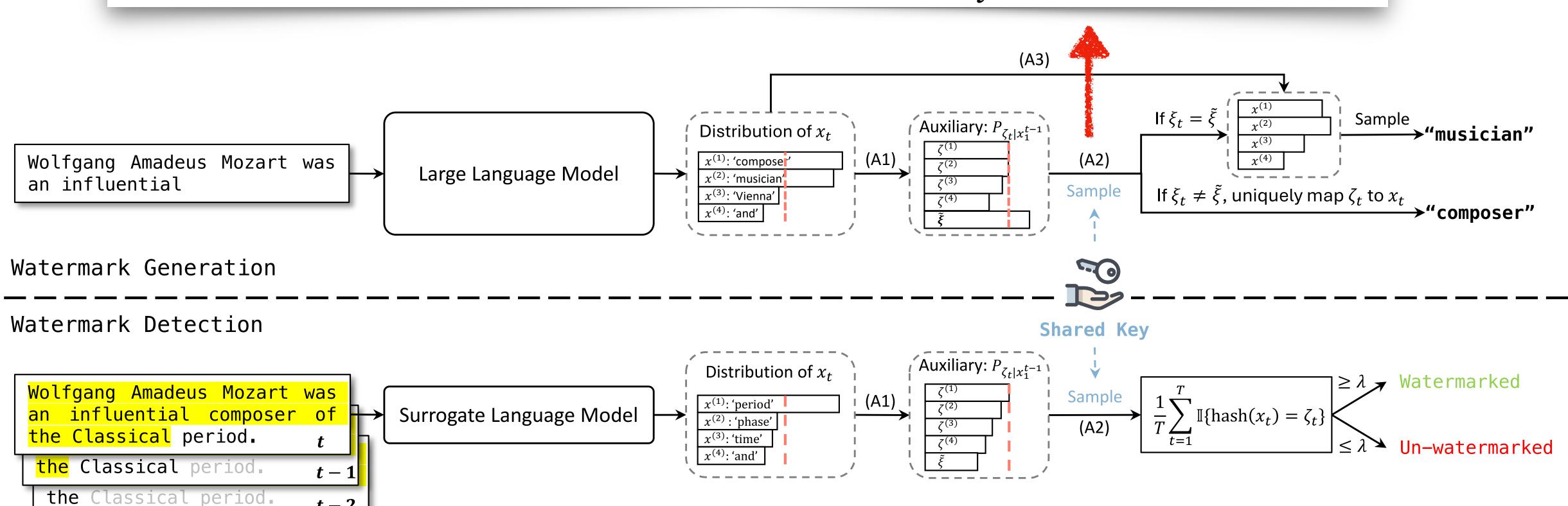
At each time t, construct $P^*_{\zeta_t|X_1^t}$ from the LLM predicted distribution $Q_{X_t|X_1^{t-1}}$



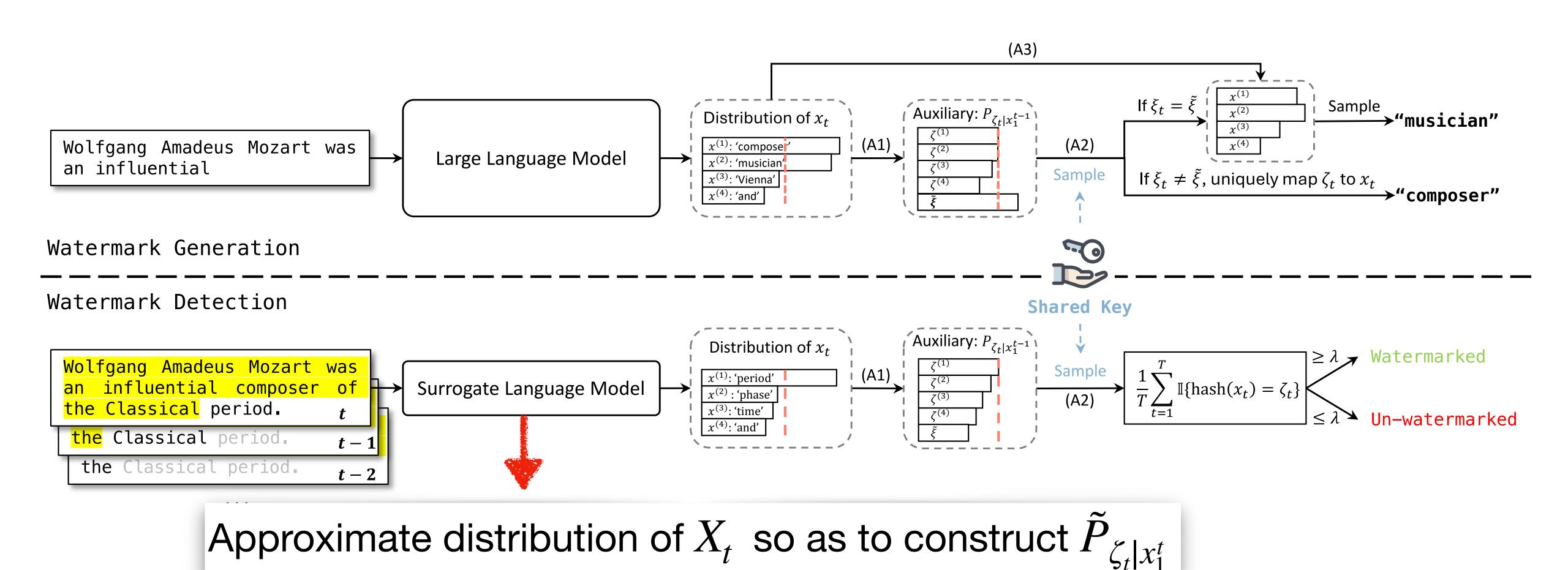
• • •

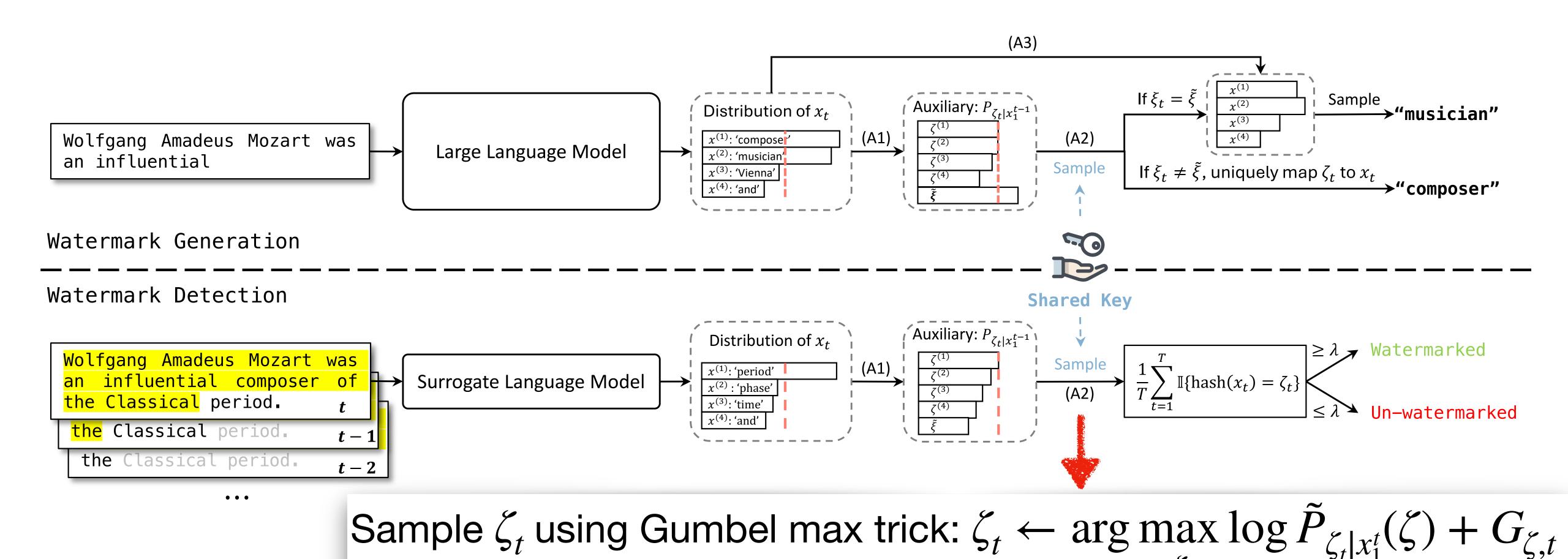
15/18

Sample ζ_t using Gumbel max trick: $\zeta_t \leftarrow \arg\max_{\zeta} \log P^*_{\zeta_t|x_1^t}(\zeta) + G_{\zeta,t}$



• • •





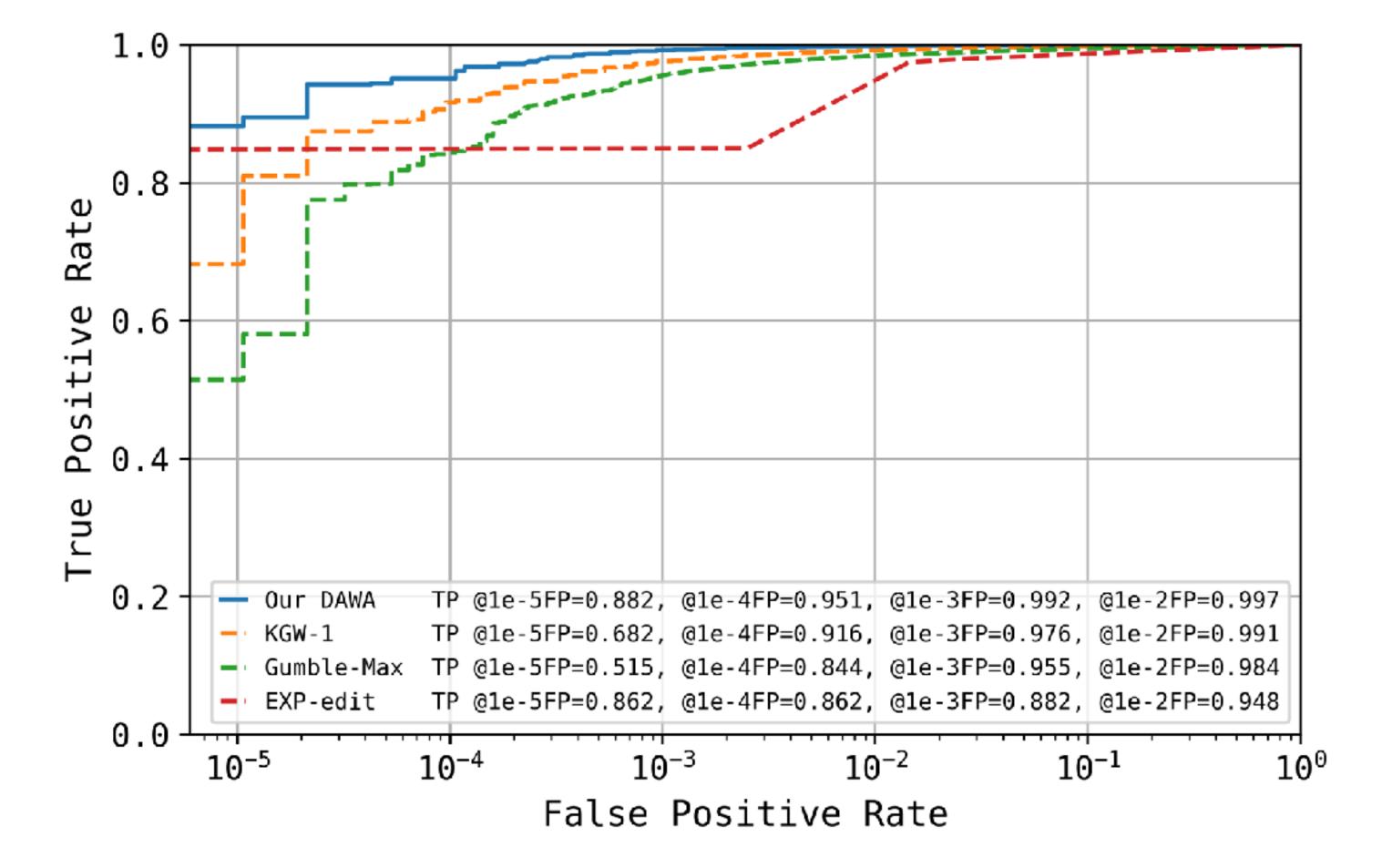
Experimental Result

DAWA (Distribution-Adaptive Watermarking Algorithm)

Experimental Result

DAWA (Distribution-Adaptive Watermarking Algorithm)

Fast and Accurate



Experimental Result

DAWA (Distribution-Adaptive Watermarking Algorithm)

Fast and Accurate

Text quality high

Methods	Human	KGW-1	EXP-Edit	Gumbel-Max	Ours
BLEU Score Avg Perplexity	0.219 8.846	0.158 14.327	0.203 12.186	0.210 11.732	0.214 6.495

• $f: \mathcal{V}^T \to [K]$: a function that maps a sequence of tokens X_1^T to a finite latent space [K], e.g., a semantic mapping

- $f: \mathcal{V}^T \to [K]$: a function that maps a sequence of tokens X_1^T to a finite latent space [K], e.g., a semantic mapping
- $\mathscr{B}_f(x_1^T) = \{\tilde{x}_1^T \in \mathscr{V}^T : f(\tilde{x}_1^T) = f(x_1^T)\}$ be an equivalence class containing x_1^T

- $f: \mathcal{V}^T \to [K]$: a function that maps a sequence of tokens X_1^T to a finite latent space [K], e.g., a semantic mapping
- $\mathscr{B}_f(x_1^T) = \{\tilde{x}_1^T \in \mathscr{V}^T : f(\tilde{x}_1^T) = f(x_1^T)\}$ be an equivalence class containing x_1^T
- Text modification: x_1^T can be modified as any text within $\mathscr{B}_f(x_1^T)$

- $f: \mathcal{V}^T \to [K]$: a function that maps a sequence of tokens X_1^T to a finite latent space [K], e.g., a semantic mapping
- $\mathscr{B}_f(x_1^T) = \{\tilde{x}_1^T \in \mathscr{V}^T : f(\tilde{x}_1^T) = f(x_1^T)\}$ be an equivalence class containing x_1^T
- Text modification: x_1^T can be modified as any text within $\mathscr{B}_f(x_1^T)$
- f-robust Type-I and Type-II errors:

- $f: \mathcal{V}^T \to [K]$: a function that maps a sequence of tokens X_1^T to a finite latent space [K], e.g., a semantic mapping
- $\mathscr{B}_f(x_1^T) = \{\tilde{x}_1^T \in \mathscr{V}^T : f(\tilde{x}_1^T) = f(x_1^T)\}$ be an equivalence class containing x_1^T
- Text modification: x_1^T can be modified as any text within $\mathscr{B}_f(x_1^T)$
- f-robust Type-I and Type-II errors:

$$\beta_0(\gamma, Q_{X_1^T}, P_{\zeta_1^T}, f) := \mathbb{E}_{Q_{X_1^T} \otimes P_{\zeta_1^T}} \left[\sup_{\tilde{x}_1^T \in \mathcal{B}_f(X_1^T)} \mathbf{1} \{ \gamma(\tilde{x}_1^T, \zeta_1^T) = 1 \} \right]$$

- $f: \mathcal{V}^T \to [K]$: a function that maps a sequence of tokens X_1^T to a finite latent space [K], e.g., a semantic mapping
- $\mathscr{B}_f(x_1^T) = \{\tilde{x}_1^T \in \mathscr{V}^T : f(\tilde{x}_1^T) = f(x_1^T)\}$ be an equivalence class containing x_1^T
- Text modification: x_1^T can be modified as any text within $\mathscr{B}_f(x_1^T)$
- f-robust Type-I and Type-II errors:

$$\beta_{0}(\gamma, Q_{X_{1}^{T}}, P_{\zeta_{1}^{T}}, f) := \mathbb{E}_{Q_{X_{1}^{T}} \otimes P_{\zeta_{1}^{T}}} \left[\sup_{\tilde{x}_{1}^{T} \in \mathcal{B}_{f}(X_{1}^{T})} \mathbf{1} \{ \gamma(\tilde{x}_{1}^{T}, \zeta_{1}^{T}) = 1 \} \right]$$

$$\beta_{1}(\gamma, P_{X_{1}^{T}, \zeta_{1}^{T}}, f) := \mathbb{E}_{P_{X_{1}^{T}, \zeta_{1}^{T}}} \left[\sup_{\tilde{x}_{1}^{T} \in \mathcal{B}_{f}(X_{1}^{T})} \mathbf{1} \{ \gamma(\tilde{x}_{1}^{T}, \zeta_{1}^{T}) = 0 \} \right]$$

Optimization problem:

$$\begin{aligned} & \min_{\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T}} \quad \boldsymbol{\beta}_1(\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T},f) \\ & \text{s.t.} \quad \sup_{\boldsymbol{Q}_{X_1^T}} \boldsymbol{\beta}_0(\boldsymbol{\gamma},\ Q_{X_1^T},\ P_{\boldsymbol{\zeta}_1^T},f) \leq \alpha \\ & \quad \boldsymbol{D}(P_{X_1^T},\ Q_{X_1^T}) \leq \epsilon \end{aligned}$$

Optimization problem:

♦ Minimum *f*-robust Type-II error:

$$\min_{\substack{\gamma,\ P_{X_1^T,\zeta_1^T}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T},f)$$
s.t.
$$\sup_{\substack{Q_{X_1^T}}} \beta_0(\gamma,\ Q_{X_1^T},\ P_{\zeta_1^T},f) \leq \alpha$$

$$D(P_{X_1^T},\ Q_{X_1^T}) \leq \epsilon$$

Optimization problem:

$$\begin{aligned} & \min_{\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T}} & \beta_1(\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T},f) \\ & \text{s.t.} & \sup_{\boldsymbol{Q}_{X_1^T}} \beta_0(\boldsymbol{\gamma},\ Q_{X_1^T},\ P_{\boldsymbol{\zeta}_1^T},f) \leq \alpha \\ & & D(P_{X_1^T},\ Q_{X_1^T}) \leq \epsilon \end{aligned}$$

♦ Minimum *f*-robust Type-II error:

$$\begin{split} & \beta_1^*(Q_{X_1^T}, \alpha, \epsilon, f) \\ &= \min_{P_{X_1^T}: \mathsf{D}(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon} \sum_{k \in [K]} \left(\left(\sum_{x_1^T: f(x_1^T) = k} P_{X_1^T}(x_1^T) \right) - \alpha \right)_+ \end{split}$$

Optimization problem:

$$\begin{aligned} & \min_{\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T}} \quad \boldsymbol{\beta}_1(\boldsymbol{\gamma},\ P_{X_1^T,\boldsymbol{\zeta}_1^T},f) \\ & \text{s.t.} \quad \sup_{\boldsymbol{Q}_{X_1^T}} \boldsymbol{\beta}_0(\boldsymbol{\gamma},\ Q_{X_1^T},\ P_{\boldsymbol{\zeta}_1^T},f) \leq \alpha \\ & \quad \boldsymbol{D}(P_{X_1^T},\ Q_{X_1^T}) \leq \epsilon \end{aligned}$$

\bigstar Minimum f-robust Type-II error:

$$\begin{split} &\beta_{1}^{*}(Q_{X_{1}^{T}},\alpha,\epsilon,f) \\ &= \min_{P_{X_{1}^{T}}: \mathsf{D}(P_{X_{1}^{T}},Q_{X_{1}^{T}}) \leq \epsilon} \sum_{k \in [K]} \left(\left(\sum_{x_{1}^{T}: f(x_{1}^{T}) = k} P_{X_{1}^{T}}(x_{1}^{T}) \right) - \alpha \right)_{+} \end{split}$$

Higher than the minimum Type-II error without considering robustness

Optimization problem:

$$\min_{\substack{\gamma,\ P_{X_1^T,\zeta_1^T}}} \beta_1(\gamma,\ P_{X_1^T,\zeta_1^T},f)$$
 s.t.
$$\sup_{\substack{Q_{X_1^T}}} \beta_0(\gamma,\ Q_{X_1^T},\ P_{\zeta_1^T},f) \leq \alpha$$

 $D(P_{X_1^T}, Q_{X_1^T}) \leq \epsilon$

\bigstar Minimum f-robust Type-II error:

$$\begin{split} &\beta_{1}^{*}(Q_{X_{1}^{T}},\alpha,\epsilon,f) \\ &= \min_{P_{X_{1}^{T}}: \mathsf{D}(P_{X_{1}^{T}},Q_{X_{1}^{T}}) \leq \epsilon} \sum_{k \in [K]} \left(\left(\sum_{x_{1}^{T}: f(x_{1}^{T}) = k} P_{X_{1}^{T}}(x_{1}^{T}) \right) - \alpha \right)_{+} \end{split}$$

Higher than the minimum Type-II error without considering robustness

♦ Optimal watermarking scheme:

add signal ζ_1^T to $P_{f(X_1^T)}$, e.g., in the semantic space