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Draw Design Layout References flailings > Y/ Tell me

ﬂ v J\ 3 v = Paragraph Spacing v ‘ ]
Colcurs Fonts (7)) sot a< Default Watermark Page

Colour

Simul knows that when you are making changes tc an existing dccument you want it
saved as a new file, and probably don’t want to have to remember to press “save as'’
before you start editing and then ‘save’ every 30 minutes. So, Simul will automatically
create a new version every time an edit is name to an existing document, saves as you
go, word by word and gives you access to your documents anywhere, anytime.

You can access your documents offline on Simul, make changes and re-format knowing
that the moment your computer or devise is back online Simul will update the file for
the rest if your team to see and save it in line with the version history.

If two team members happen to be working on the same document, offline, at the same
time Simul has your back here too.

Each team members file will be saved as a new version, uploaded when they are back
online, and an alert is sent to the document owner that there are two new versions

available to their review.

The document owner can then review the documents and merge them together at the
click of a button.

Simul allows you to collaborate from anywhere, anytime without worrying about saving
your work or accidently overriding a colleagues file.

Its collzaboration made easy and Simul knows you needed it.

So, give it a try, you'll never search for a lost document again with Simul on your side.
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QXIT
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4 Jointly optimal detector y*

= >I< .
and watermarking scheme PXIT, 7

¥ =1{X] =g}

for some surjective g : ' - & D 71

Perer: P}: adaptive to original LLM
predicted distribution Oy

Unlike existing watermarking methods
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Optimization problem: 4 Minimum f-robust Type-II error:
ﬁ*(Q T, A, €9f)
min A7, P ) 5
/s DXTT — min Z (( Z PXlT(xlT)) —a)_l_
st supfo(y, Qxr, o f) S @ PP ety N \lal)=x
QXIT
D(P, 1, Q) < € Higher than the minimum Type-Il error

1 17— without considering robustness
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Optimization problem: 4 Minimum f-robust Type-II error:

min  f(y, , ) Pl e el)

= min ) (( 2 PX{@{)) —a)+

s.t.  sup fy(7, QX1T, ) < a PXIPETOD=e 1 ok \ \aTyfil)=k
QXlT
Higher than the minimum Type-Il error
< . L
D7y, QX? )< € without considering robustness

4 Optimal watermarking scheme:

add signal ClT to Pf(X{), e.g., in the semantic space
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